Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 22(9)2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-34065149

RESUMEN

Ovarian cancer is a fatal gynecological cancer because of a lack of early diagnosis, which often relapses as chemoresistant. Trichodermin, a trichothecene first isolated from Trichoderma viride, is an inhibitor of eukaryotic protein synthesis. However, whether trichodermin is able to suppress ovarian cancer or not was unclear. In this study, trichodermin (0.5 µM or greater) significantly decreased the proliferation of two ovarian cancer cell lines A2780/CP70 and OVCAR-3. Normal ovarian IOSE 346 cells were much less susceptible to trichodermin than the cancer cell lines. Trichodermin predominantly inhibited ovarian cancer cells by inducing G0/G1 cell cycle arrest rather than apoptosis. Trichodermin decreased the expression of cyclin D1, CDK4, CDK2, retinoblastoma protein, Cdc25A, and c-Myc but showed little effect on the expression of p21Waf1/Cip1, p27Kip1, or p16Ink4a. c-Myc was a key target of trichodermin. Trichodermin regulated the expression of Cdc25A and its downstream proteins via c-Myc. Overexpression of c-Myc attenuated trichodermin's anti-ovarian cancer activity. In addition, trichodermin decelerated tumor growth in BALB/c nude mice, proving its effectiveness in vivo. These findings suggested that trichodermin has the potential to contribute to the treatment of ovarian cancer.


Asunto(s)
Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes myc , Tricodermina/farmacología , Animales , Biomarcadores de Tumor , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Neoplasias Ováricas , Tricodermina/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Molecules ; 26(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802884

RESUMEN

Novel therapeutic strategies for ovarian cancer treatment are in critical need due to the chemoresistance and adverse side effects of platinum-based chemotherapy. Theasaponin E1 (TSE1) is an oleanane-type saponin from Camellia sinensis seeds. Its apoptosis-inducing, cell cycle arresting and antiangiogenesis activities against platinum-resistant ovarian cancer cells were elucidated in vitro and using the chicken chorioallantoic membrane (CAM) assay. The results showed that TSE1 had more potent cell growth inhibitory effects on ovarian cancer OVCAR-3 and A2780/CP70 cells than cisplatin and was lower in cytotoxicity to normal ovarian IOSE-364 cells. TSE1 significantly induced OVCAR-3 cell apoptosis via the intrinsic and extrinsic apoptotic pathways, slightly arresting cell cycle at the G2/M phase, and obviously inhibited OVCAR-3 cell migration and angiogenesis with reducing the protein secretion and expression of vascular endothelial growth factor (VEGF). Western bolt assay showed that Serine/threonine Kinase (Akt) signaling related proteins including Ataxia telangiectasia mutated kinase (ATM), Phosphatase and tensin homolog (PTEN), Akt, Mammalian target of rapamycin (mTOR), Ribosome S6 protein kinase (p70S6K) and e IF4E-binding protein 1(4E-BP1) were regulated, and Hypoxia inducible factor-1α (HIF-1α) protein expression was decreased by TSE1 in OVCAR-3 cells. Moreover, TSE1 treatment potently downregulated protein expression of the Notch ligands including Delta-like protein 4 (Dll4) and Jagged1, and reduced the protein level of the intracellular domain (NICD) of Notch1. Combination treatment of TSE1 with the Notch1 signaling inhibitor tert-butyl (2S)-2-[[(2S)-2-[[2-(3,5-difluorophenyl)acetyl]amino]propanoyl]amino]-2-phenylacetate (DAPT), or the Akt signaling inhibitor wortmannin, showed a stronger inhibition toward HIF-1α activation compared with single compound treatment. Taken together, TSE1 might be a potential candidate compound for improving platinum-resistant ovarian cancer treatment via Dll4/Jagged1-Notch1-Akt-HIF-1α axis.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico , Ácido Oleanólico/análogos & derivados , Neoplasias Ováricas/tratamiento farmacológico , Saponinas/farmacología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Camellia sinensis/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Membrana Corioalantoides/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ácido Oleanólico/farmacología , Fosfohidrolasa PTEN/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Semillas/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560563

RESUMEN

Ovarian cancer is currently ranked at fifth in cancer deaths among women. Patients who have undergone cisplatin-based chemotherapy can experience adverse effects or become resistant to treatment, which is a major impediment for ovarian cancer treatment. Natural products from plants have drawn great attention in the fight against cancer recently. In this trial, purified tea (Camellia sinensis (L.) Kuntze) flower saponins (PTFSs), whose main components are Chakasaponin I and Chakasaponin IV, inhibited the growth and proliferation of ovarian cancer cell lines A2780/CP70 and OVCAR-3. Flow cytometry, caspase activity and Western blotting analysis suggested that such inhibitory effects of PTFSs on ovarian cancer cells were attributed to the induction of cell apoptosis through the intrinsic pathway rather than extrinsic pathway. The p53 protein was then confirmed to play an important role in PTFS-induced intrinsic apoptosis, and the levels of its downstream proteins such as caspase families, Bcl-2 families, Apaf-1 and PARP were regulated by PTFS treatment. In addition, the upregulation of p53 expression by PTFSs were at least partly induced by DNA damage through the ATM/Chk2 pathway. The results help us to understand the mechanisms underlying the effects of PTFSs on preventing and treating platinum-resistant ovarian cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos , Flores/química , Saponinas/farmacología , Té/química , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Femenino , Humanos , Espectrometría de Masas , Estructura Molecular , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Saponinas/química , Transducción de Señal/efectos de los fármacos
4.
Molecules ; 25(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187244

RESUMEN

Tea flower saponins (TFS) possess effective anticancer properties. The diversity and complexity of TFS increases the difficulty of their extraction and purification from tea flowers. Here, multiple methods including solvent extraction, microporous resin separation and preparative HPLC separation were used to obtain TFS with a yield of 0.34%. Furthermore, we revealed that TFS induced autophagy-as evidenced by an increase in MDC-positive cell populations and mCherry-LC3B-labeled autolysosomes and an upregulation of LC3II protein levels. 3-MA reversed the decrease in cell viability induced by TFS, showing that TFS induced autophagic cell death. TFS-induced autophagy was not dependent on the Akt/mTOR/p70S6K signaling pathway. TFS-induced autophagy in OVCAR-3 cells was accompanied by ERK pathway activation and reactive oxygen species (ROS) generation. This paper is the first report of TFS-mediated autophagy of ovarian cancer cells. These results provide new insights for future studies of the anti-cancer effects of TFS.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia , Camellia sinensis/química , Neoplasias Ováricas/patología , Saponinas/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Cromatografía Líquida de Alta Presión , Femenino , Flores/química , Humanos , Lisosomas/química , Proteínas Asociadas a Microtúbulos/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/química , Transducción de Señal
5.
Molecules ; 25(7)2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235536

RESUMEN

Among women worldwide, ovarian cancer is one of the most dangerous cancers. Patients undergoing platinum-based chemotherapy might get adverse side effects and develop resistance to drugs. In recent years, natural compounds have aroused growing attention in cancer treatment. Galangin inhibited the growth of two cell lines, A2780/CP70 and OVCAR-3, more strongly than the growth of a normal ovarian cell line, IOSE 364. The IC50 values of galangin on proliferation of A2780/CP70, OVCAR-3 and IOSE 364 cells were 42.3, 34.5, and 131.3 µM, respectively. Flow cytometry analysis indicated that galangin preferentially induced apoptosis in both ovarian cancer cells with respect to normal ovarian cells. Galangin treatment increased the level of cleaved caspase-3 and -7 via the p53-dependent intrinsic apoptotic pathway by up-regulating Bax protein and via the p53-dependent extrinsic apoptotic pathway by up-regulating DR5 protein. By down-regulating the level of p53 with 20 µM pifithrin-α (PFT-α), the apoptotic rates of OVCAR-3 cells induced by galangin treatment (40 µM) were significantly decreased from 18.2% to 10.2%, indicating that p53 is a key regulatory protein in galangin-induced apoptosis in ovarian cancer cells. Although galangin up-regulated the expression of p21, it had little effect on the cell cycle of the two ovarian cancer cell lines. Furthermore, the levels of phosphorylated Akt and phosphorylated p70S6K were decreased through galangin treatment, suggesting that the Akt/p70S6K pathways might be involved in the apoptosis. Our results suggested that galangin is selective against cancer cells and can be used for the treatment of platinum-resistant ovarian cancers in humans.


Asunto(s)
Apoptosis/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Flavonoides/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Ováricas , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/biosíntesis , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología
6.
Molecules ; 25(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752095

RESUMEN

Ovarian cancer is considered to be one of the most serious malignant tumors in women. Natural compounds have been considered as important sources in the search for new anti-cancer agents. Saponins are characteristic components of tea (Camellia sinensis) flower and have various biological activities, including anti-tumor effects. In this study, a high purity standardized saponin extract, namely Baiye No.1 tea flower saponin (BTFS), which contained Floratheasaponin A and Floratheasaponin D, were isolated from tea (Camellia sinensis cv. Baiye 1) flowers by macroporous resin and preparative liquid chromatography. Then, the component and purity were detected by UPLC-Q-TOF/MS/MS. This high purity BTFS inhibited the proliferation of A2780/CP70 cancer cells dose-dependently, which is evidenced by the inhibition of cell viability, reduction of colony formation ability, and suppression of PCNA protein expression. Further research found BTFS induced S phase cell cycle arrest by up-regulating p21 proteins expression and down-regulating Cyclin A2, CDK2, and Cdc25A protein expression. Furthermore, BTFS caused DNA damage and activated the ATM-Chk2 signaling pathway to block cell cycle progression. Moreover, BTFS trigged both extrinsic and intrinsic apoptosis-BTFS up-regulated the expression of death receptor pathway-related proteins DR5, Fas, and FADD and increased the ratio of pro-apoptotic/anti-apoptotic proteins of the Bcl-2 family. BTFS-induced apoptosis seems to be related to the AKT-MDM2-p53 signaling pathway. In summary, our results demonstrate that BTFS has the potential to be used as a nutraceutical for the prevention and treatment of ovarian cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Camellia sinensis/química , Extractos Vegetales/química , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Camellia sinensis/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclina A2/genética , Ciclina A2/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Flores/química , Flores/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Saponinas/química , Saponinas/aislamiento & purificación , Proteína p53 Supresora de Tumor/metabolismo
7.
Molecules ; 24(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769778

RESUMEN

Theaflavin-3,3'-digallate (TF3) is a unique polyphenol in black tea. Epidemiological studies have proved that black tea consumption decreases the incidence rate of ovarian cancer. Our former research demonstrated that TF3 inhibited human ovarian cancer cells. Nevertheless, the roles of checkpoint kinase 2 (Chk2) and p27 kip1 (p27) in TF3-mediated inhibition of human ovarian cancer cells have not yet been investigated. In the current study, TF3 enhanced the phosphorylation of Chk2 to modulate the ratio of pro/anti-apoptotic Bcl-2 family proteins to initiate intrinsic apoptosis in a p53-independent manner and increased the expression of death receptors to activate extrinsic apoptosis in OVCAR-3 human ovarian carcinoma cells. In addition, TF3 up-regulated the expression of p27 to induce G0/G1 cell cycle arrest in OVCAR-3 cells. Our study indicated that Chk2 and p27 were vital anticancer targets of TF3 and provided more evidence that TF3 might be a potent agent to be applied as adjuvant treatment for ovarian cancer.


Asunto(s)
Biflavonoides/farmacología , Carcinoma/tratamiento farmacológico , Catequina/análogos & derivados , Quinasa de Punto de Control 2/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Neoplasias Ováricas/tratamiento farmacológico , Antioxidantes/química , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Biflavonoides/química , Camellia sinensis/química , Carcinoma/genética , Carcinoma/patología , Catequina/química , Catequina/farmacología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/efectos de los fármacos , Té/química , Proteína p53 Supresora de Tumor/genética
8.
Int J Mol Sci ; 19(1)2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29301278

RESUMEN

Ovarian cancer has the highest fatality rate among the gynecologic cancers. The side effects, high relapse rate, and drug resistance lead to low long-term survival rate (less than 40%) of patients with advanced ovarian cancer. Theaflavin-3,3'-digallate (TF3), a black tea polyphenol, showed less cytotoxicity to normal ovarian cells than ovarian cancer cells. We aimed to investigate whether TF3 could potentiate the inhibitory effect of cisplatin against human ovarian cancer cell lines. In the present study, combined treatment with TF3 and cisplatin showed a synergistic cytotoxicity against A2780/CP70 and OVCAR3 cells. Treatment with TF3 could increase the intracellular accumulation of platinum (Pt) and DNA-Pt adducts and enhanced DNA damage induced by cisplatin in both cells. Treatment with TF3 decreased the glutathione (GSH) levels and upregulated the protein levels of the copper transporter 1 (CTR1) in both cells, which led to the enhanced sensitivity of both ovarian cancer cells to cisplatin. The results imply that TF3 might be used as an adjuvant to potentiate the inhibitory effect of cisplatin against advanced ovarian cancer.


Asunto(s)
Biflavonoides/farmacología , Catequina/análogos & derivados , Proteínas de Transporte de Catión/metabolismo , Cisplatino/farmacología , Glutatión/metabolismo , Neoplasias Ováricas/metabolismo , Catequina/farmacología , Línea Celular Tumoral , Transportador de Cobre 1 , Aductos de ADN/metabolismo , Daño del ADN , Sinergismo Farmacológico , Femenino , Humanos , Neoplasias Ováricas/patología , Regulación hacia Arriba/efectos de los fármacos
9.
Molecules ; 23(5)2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29734760

RESUMEN

Kaempferol is a widely distributed dietary flavonoid. Epidemiological studies have demonstrated kaempferol consumption lowers the risk of ovarian cancer. Our previous research proved that kaempferol suppresses human ovarian cancer cells by inhibiting tumor angiogenesis. However, the effects of kaempferol on the cell cycle and extrinsic apoptosis of ovarian cancer cells have not yet been studied. In the present study, we demonstrated that kaempferol induced G2/M cell cycle arrest via the Chk2/Cdc25C/Cdc2 pathway and Chk2/p21/Cdc2 pathway in human ovarian cancer A2780/CP70 cells. Chk2 was not responsible for kaempferol-induced apoptosis and up-regulation of p53. Kaempferol stimulated extrinsic apoptosis via death receptors/FADD/Caspase-8 pathway. Our study suggested that Chk2 and death receptors played important roles in the anticancer activity of kaempferol in A2780/CP70 cells. These findings provide more evidence of the anti-ovarian cancer properties of kaempferol and suggest that kaempferol could be a potential candidate for ovarian cancer adjuvant therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Quinasa de Punto de Control 2/genética , Células Epiteliales/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Quempferoles/farmacología , Receptores de Muerte Celular/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular Tumoral , Quinasa de Punto de Control 2/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Receptores de Muerte Celular/metabolismo , Transducción de Señal , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
10.
Molecules ; 23(6)2018 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-29914196

RESUMEN

Ovarian cancer has the highest mortality rate of all gynecological malignancies and the five-year death rate of patients has remained high in the past five decades. Recently, with the rise of cancer stem cells (CSCs) theory, an increasing amount of research has suggested that CSCs give rise to tumor recurrence and metastasis. Theasaponin E1 (TSE1), which was isolated from green tea (Camellia sinensis) seeds, has been proposed to be an effective compound for tumor treatment. However, studies on whether TSE1 takes effect through CSCs have rarely been reported. In this paper, ALDH-positive (ALDH+) ovarian cancer stem-like cells from two platinum-resistant ovarian cancer cell lines A2780/CP70 and OVCAR-3 were used to study the anti-proliferation effect of TSE1 on CSCs. The ALDH+ cells showed significantly stronger sphere forming vitality and stronger cell migration capability. In addition, the stemness marker proteins CD44, Oct-4, Nanog, as well as Bcl-2 and MMP-9 expression levels of ALDH+ cells were upregulated compared with the original tumor cells, indicating that they have certain stem cell characteristics. At the same time, the results showed that TSE1 could inhibit cell proliferation and suspension sphere formation in ALDH+ cells. Our data suggests that TSE1 as a natural compound has the potential to reduce human ovarian cancer mortality. However, more research is still needed to find out the molecular mechanism of TSE1-mediated inhibition of ALDH+ cells and possible drug applications on the disease.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Células Madre Neoplásicas/metabolismo , Ácido Oleanólico/análogos & derivados , Neoplasias Ováricas/metabolismo , Saponinas/farmacología , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Estructura Molecular , Células Madre Neoplásicas/efectos de los fármacos , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Saponinas/química , Té/química
11.
Molecules ; 22(10)2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28974006

RESUMEN

Ovarian cancer is regarded as one of the most severe malignancies for women in the world. Death rates have remained steady over the past five decades, due to the undeniable inefficiency of the current treatment in preventing its recurrence and death. The development of new effective alternative agents for ovarian cancer treatment is becoming increasingly critical. Tea saponins (TS) are triterpenoidsaponins composed of sapogenins, glycosides, and organic acids, which possess a variety of pharmacological activities, and have shown promise in the anti-cancer field. Through cell CellTiter 96® Aqueous One Solution Cell Proliferation assay (MTS) assay, colony formation, Hoechst 33342 staining assay, caspase-3/7 activities, flow cytometry for apoptosis analysis, and Western blot, we observed that TS isolated from the seeds of tea plants, Camellia sinensis, exhibited strong anti-proliferation inhibitory effects on OVCAR-3 and A2780/CP70 ovarian cancer cell lines. Our results indicate that TS may selectivity inhibit human ovarian cancer cells by mediating apoptosis through the extrinsic pathway, and initiating anti-angiogenesis via decreased VEGF protein levels in a HIF-1α-dependent pathway. Our data suggests that, in the future, TS could be incorporated into a potential therapeutic agent against human ovarian cancer.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Saponinas/química , Saponinas/farmacología , Triterpenos/química , Triterpenos/farmacología , Apoptosis , Camellia sinensis/química , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Ácido Oleanólico/química , Extractos Vegetales/química , Saponinas/aislamiento & purificación , Semillas/química , Transducción de Señal , Té/química , Triterpenos/aislamiento & purificación , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos
12.
Semin Cancer Biol ; 35 Suppl: S224-S243, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25600295

RESUMEN

Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias/terapia , Neovascularización Patológica/terapia , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/patología , Proliferación Celular/efectos de los fármacos , Humanos , Inmunoterapia , Neoplasias/prevención & control , Neovascularización Patológica/prevención & control
13.
Semin Cancer Biol ; 35 Suppl: S276-S304, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26590477

RESUMEN

Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.


Asunto(s)
Heterogeneidad Genética , Terapia Molecular Dirigida , Neoplasias/terapia , Medicina de Precisión , Antineoplásicos Fitogénicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Neoplasias/prevención & control , Transducción de Señal , Microambiente Tumoral/genética
14.
Med Chem Res ; 25(8): 1515-1523, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28008217

RESUMEN

The constituents of many traditional Chinese herbal remedies are currently at the forefront of modern cancer research. Baicalein, a bioactive flavone widely used in nutraceuticals and pharmaceuticals, has shown great potential in the treatment and prevention of cancer without causing severe side effects. Baicalein induces cancer cell apoptosis and cause cell cycle arrest. It shows inhibitory effects on angiogenesis, metastasis and inflammation, all of which are necessary for the promotion and progression of cancer. This review presents an overview of the anti-cancer effects and mechanisms of baicalein. In addition, the bioavailability of baicalein and approaches to improve it are summarized. Treatments of baicalein in combination with other anti-cancer agents are also mentioned.

15.
J Biol Chem ; 288(46): 33049-59, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24089524

RESUMEN

Nicotine, the addictive component of cigarettes, promotes lung cancer proliferation via the α7-nicotinic acetylcholine receptor (α7-nAChR) subtype. The present manuscript explores the effect of nicotine exposure on α7-nAChR levels in squamous cell carcinoma of the lung (SCC-L) in vitro and in vivo. Nicotine (at concentrations present in the plasma of average smokers) increased α7-nAChR levels in human SCC-L cell lines. Nicotine-induced up-regulation of α7-nAChR was confirmed in vivo by chicken chorioallantoic membrane models. We also observed that the levels of α7-nAChR in human SCC-L tumors (isolated from patients who are active smokers) correlated with their smoking history. Nicotine increased the levels of α7-nAChR mRNA and α7-nAChR transcription in human SCC-L cell lines and SCC-L tumors. Nicotine-induced up-regulation of α7-nAChR required GATA4 and GATA6. ChIP assays showed that nicotine induced the binding of GATA4 or GATA6 to Sp1 on the α7-nAChR promoter, thereby inducing its transcription and increasing its levels in human SCC-L. Our data are clinically relevant because SCC-L patients smoked for decades before being diagnosed with cancer. It may be envisaged that continuous exposure to nicotine (in such SCC-L patients) causes up-regulation of α7-nAChRs, which facilitates tumor growth and progression. Our results will also be relevant to many SCC-L patients exposed to nicotine via second-hand smoke, electronic cigarettes, and patches or gums to quit smoking.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA6/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de Células Escamosas/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Factor de Transcripción Sp1/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/biosíntesis , Línea Celular Tumoral , Femenino , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Proteínas de Neoplasias/genética , Neoplasias de Células Escamosas/genética , Neoplasias de Células Escamosas/patología , Elementos de Respuesta , Fumar/efectos adversos , Fumar/genética , Fumar/metabolismo , Fumar/patología , Factor de Transcripción Sp1/genética , Contaminación por Humo de Tabaco , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética
16.
Biochem Biophys Res Commun ; 438(2): 370-4, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23892041

RESUMEN

Tea polyphenols (-)-epigallocatechin-3-gallate (EGCG) and theaflavin-3-3'-digallate (TF3) are two prospective compounds in cancer prevention and treatment. Ascorbic acid (Vc) is essential to a healthy diet as well as being a highly effective antioxidant. In this work, the effects of the combination of EGCG or TF3 with Vc on the apoptosis and caspases-3/9 activities in human lung adenocarcinoma SPC-A-1 cells and esophageal carcinoma Eca-109 cells were determined. Furthermore, the role of mitogen-activated protein kinases (MAPK) pathways in the apoptosis induced by TF3 or EGCG together with Vc were studied using three MAPK inhibitors (ERK inhibitor PD98059, JNK inhibitor SP600125 and p38 inhibitor SB203580). Our results showed that Vc could enhance the EGCG and TF3 induced apoptosis in SPC-A-1 and Eca-109 cells, and this effect involved the activation of caspase-3 and 9. EGCG, TF3 and Vc could activate MAPK pathways respectively, and each compound activated different MAPK subfamilies in different cells. This may explain the enhancement of EGCG and TF3 induced apoptosis by Vc in SPC-A-1 and Eca-109 cells, and will ultimately aid the design of more effective anti-cancer treatments.


Asunto(s)
Adenocarcinoma/patología , Apoptosis , Biflavonoides/farmacología , Catequina/análogos & derivados , Neoplasias Esofágicas/patología , Ácido Gálico/análogos & derivados , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas , Anticarcinógenos/farmacología , Antineoplásicos/farmacología , Ácido Ascórbico/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Catequina/farmacología , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Ácido Gálico/farmacología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos
17.
Int J Mol Sci ; 14(3): 6012-25, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23502466

RESUMEN

Ovarian cancer is one of the primary causes of death for women all through the Western world. Baicalin and baicalein are naturally occurring flavonoids that are found in the roots and leaves of some Chinese medicinal plants and are thought to have antioxidant activity and possible anti-angiogenic, anti-cancer, anxiolytic, anti-inflammatory and neuroprotective activities. Two kinds of ovarian cancer (OVCAR-3 and CP-70) cell lines and a normal ovarian cell line (IOSE-364) were selected to be investigated in the inhibitory effect of baicalin and baicalein on cancer cells. Largely, baicalin and baicalein inhibited ovarian cancer cell viability in both ovarian cancer cell lines with LD50 values in the range of 45-55 µM for baicalin and 25-40 µM for baicalein. On the other hand, both compounds had fewer inhibitory effects on normal ovarian cells viability with LD50 values of 177 µM for baicalin and 68 µM for baicalein. Baicalin decreased expression of VEGF (20 µM), cMyc (80 µM), and NFkB (20 µM); baicalein decreased expression of VEGF (10 µM), HIF-1α (20 µM), cMyc (20 µM), and NFkB (40 µM). Therefore baicalein is more effective in inhibiting cancer cell viability and expression of VEGF, HIF-1α, cMyc, and NFκB in both ovarian cancer cell lines. It seems that baicalein inhibited cancer cell viability through the inhibition of cancer promoting genes expression including VEGF, HIF-1α, cMyc, and NFκB. Overall, this study showed that baicalein and baicalin significantly inhibited the viability of ovarian cancer cells, while generally exerting less of an effect on normal cells. They have potential for chemoprevention and treatment of ovarian cancers.

18.
Angiogenesis ; 15(1): 99-114, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22198237

RESUMEN

Small cell lung cancer (SCLC) demonstrates a strong etiological association with smoking. Although cigarette smoke is a mixture of about 4,000 compounds, nicotine is the addictive component of cigarette smoke. Several convergent studies have shown that nicotine promotes angiogenesis in lung cancers via the α7-nicotinic acetylcholine receptor (α7-nAChR) on endothelial cells. Therefore, we conjectured that α7-nAChR antagonists may attenuate nicotine-induced angiogenesis and be useful for the treatment of human SCLC. For the first time, our study explores the anti-angiogenic activity of MG624, a small-molecule α7-nAChR antagonist, in several experimental models of angiogenesis. We observed that MG624 potently suppressed the proliferation of primary human microvascular endothelial cells of the lung (HMEC-Ls). Furthermore, MG624 displayed robust anti-angiogenic activity in the Matrigel, rat aortic ring and rat retinal explant assays. The anti-angiogenic activity of MG624 was assessed by two in vivo models, namely the chicken chorioallantoic membrane model and the nude mice model. In both of these experimental models, MG624 inhibited angiogenesis of human SCLC tumors. Most importantly, the administration of MG624 was not associated with any toxic side effects, lethargy or discomfort in the mice. The anti-angiogenic activity of MG624 was mediated via the suppression of nicotine-induced FGF2 levels in HMEC-Ls. MG624 decreased nicotine-induced early growth response gene 1 (Egr-1) levels in HMEC-Ls, and reduced the levels of Egr-1 on the FGF2 promoter. Consequently, this process decreased FGF2 levels and angiogenesis. Our findings suggest that the anti-angiogenic effects of MG624 could be useful in anti-angiogenic therapy of human SCLCs.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Antagonistas Nicotínicos/farmacología , Compuestos de Amonio Cuaternario/farmacología , Receptores Nicotínicos/metabolismo , Transducción de Señal/efectos de los fármacos , Estilbenos/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Pollos , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Pulmón/irrigación sanguínea , Pulmón/citología , Ratones , Ratones Desnudos , Microvasos/citología , Microvasos/efectos de los fármacos , Modelos Biológicos , Nicotina/farmacología , Antagonistas Nicotínicos/química , Compuestos de Amonio Cuaternario/química , Ratas , Estilbenos/química , Receptor Nicotínico de Acetilcolina alfa 7
19.
Nutrients ; 13(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34959930

RESUMEN

Theaflavin-3,3'-digallate (TF3) is the most important theaflavin monomer in black tea. TF3 was proved to reduce blood glucose level in mice and rats. However, the elaborate anti-diabetic mechanism was not well elucidated. In this work, human hepatoma G2 (HepG2) cells and zebrafish (Danio rerio) were used simultaneously to reveal anti-diabetic effect of TF3. The results showed that TF3 could effectively rise glucose absorption capacity in insulin-resistant HepG2 cells and regulate glucose level in diabetic zebrafish. The hypoglycemic effect was mediated through down-regulating phosphoenolpyruvate carboxykinase and up-regulating glucokinase. More importantly, TF3 could significantly improve ß cells regeneration in diabetic zebrafish at low concentrations (5 µg/mL and 10 µg/mL), which meant TF3 had a strong anti-diabetic effect. Obviously, this work provided the potential benefit of TF3 on hypoglycemic effect, regulating glucose metabolism enzymes, and protecting ß cells. TF3 might be a promising agent for combating diabetes.


Asunto(s)
Biflavonoides/farmacología , Catequina/análogos & derivados , Evaluación Preclínica de Medicamentos/métodos , Hipoglucemiantes , Animales , Biflavonoides/aislamiento & purificación , Catequina/aislamiento & purificación , Catequina/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Glucoquinasa/metabolismo , Glucosa/metabolismo , Células Hep G2 , Humanos , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Té/química , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra
20.
Appl Sci (Basel) ; 11(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34386269

RESUMEN

Ovarian cancer (OC) is among the top gynecologic cancers in the US with a death tally of 13,940 in the past year alone. Gallic acid (GA) is a natural compound with pharmacological benefits. In this research, the role of GA on cell proliferation, cell apoptosis, cell cycle-related protein expression was explored in OC cell lines OVCAR-3 and A2780/CP70. After 24,48 and 72 h of GA treatment, the IC50 values in OVCAR-3 cells were 22.14 ± 0.45, 20.36 ± 0.18, 15.13 ± 0.53 µM, respectively and in A2780/CP70 cells IC50 values were 33.53 ± 2.64, 27.18 ± 0.22, 22.81 ± 0.56, respectively. Hoechst 33,342 DNA staining and flow cytometry results showed 20 µM GA exposure could significantly accelerate apoptosis in both OC cell lines and the total apoptotic rate increased from 5.34%(control) to 21.42% in OVCAR-3 cells and from 8.01%(control) to 17.69% in A2780/CP70 cells. Western blot analysis revealed that GA stimulated programmed OC cell death via a p53-dependent intrinsic signaling. In addition, GA arrested cell cycle at the S or G2 phase via p53-p21-Cdc2-cyclin B pathway in the same cells. In conclusion, we provide some evidence of the efficacy of GA in ovarian cancer prevention and therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA