Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 59(3): 1542-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25534743

RESUMEN

Most Mycobacterium tuberculosis rifampin-resistant strains have been associated with mutations in an 81-bp rifampin resistance-determining region (RRDR) in the gene rpoB. However, if this region alone were targeted, rifampin-resistant strains with mutations outside the RRDR would not be detected. In this study, among 51 rifampin-resistant clinical isolates analyzed by sequencing 1,681-bp-long DNA fragments containing the RRDR, 47 isolates contained mutations within the RRDR, three isolates contained mutations both within and outside the RRDR, and only one isolate had a single missense mutation (Arg548His) located outside the RRDR. A drug susceptibility test of recombinant Mycobacterium smegmatis and M. tuberculosis isolates carrying mutated rpoB (Arg548His) showed an increased MIC for rifampin compared to that of the control strains. Modeling of the Arg548His mutant RpoB-DNA complex revealed that the His548 side chain formed a more stable hydrogen bond structure than did Arg548, reducing the flexibility of the rifampin-resistant cluster II region of RpoB, suggesting that the RpoB Arg548His mutant does not effectively interact with rifampin and results in bacterial resistance to the drug. This is the first report on the relationship between the mutation in codon 548 of RpoB and rifampin resistance in tuberculosis. The novel mutational profile of the rpoB gene described here will contribute to the comprehensive understanding of rifampin resistance patterns and to the development of a useful tool for simple and rapid drug susceptibility tests.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Proteínas Bacterianas/genética , Codón/genética , Farmacorresistencia Bacteriana/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Rifampin/farmacología , Secuencia de Aminoácidos , ARN Polimerasas Dirigidas por ADN , Datos de Secuencia Molecular , Mutación/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
2.
J Formos Med Assoc ; 114(6): 484-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25542769

RESUMEN

Taiwan is a relatively isolated island, serving as a mixing vessel for colonization by different waves of ethnic and migratory groups over the past 4 centuries. The potential transmission pattern of Mycobacterium tuberculosis in different ethnic and migratory populations remains to be elucidated. By using mycobacterial tandem repeat sequences as genetic markers, the prevalence of M. tuberculosis strains in Taiwan revealed a close link to the historical migration. Interestingly, the M. tuberculosis strain in the aborigines of Eastern and Central Taiwan had a dominance of the Haarlem (Dutch) strain while those in Southern Taiwan had a dominance of the East-African Indian (EAI) strain. The prevalence of different M. tuberculosis strains in specific ethnic populations suggests that M. tuberculosis transmission is limited and restricted to close contact. The prevalence of the Beijing modern strain in the young population causes a concern for M. tuberculosis control, because of high virulence and drug resistance. Furthermore, our data using molecular genotyping should provide valuable information on the historical study of the origin and migration of aborigines in Taiwan.


Asunto(s)
Genotipo , Mycobacterium tuberculosis/genética , Tuberculosis/etnología , Pueblo Asiatico , Farmacorresistencia Bacteriana Múltiple , Emigración e Inmigración , Humanos , Taiwán/etnología , Tuberculosis/microbiología
3.
Infect Drug Resist ; 17: 2389-2399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903152

RESUMEN

Objective: The most common extraintestinal pathogen and infection site is uropathogenic Escherichia coli (UPEC), which causes urinary tract infections (UTIs). UPEC is also a common pathogen in bloodstream infections; in severe cases, it can lead to death. Although host and bacterial virulence factors have been demonstrated to be associated with UTI pathogenesis, the role of the related contributing factors in UTI and urinary source bacteremia is not yet fully understood. This study aimed to compare and analyze the factors contributing to urinary bacteremia in patients with UTI. Methods: A total of 171 E. coli strains collected from patients with UTI and urinary source bacteremia at Chiayi Christian Hospital were used. Phylogenetic groups and virulence factors were determined using PCR. Drug resistance patterns were determined using the disk diffusion assay. Results: Previous studies have demonstrated that fimbriae and papGII may be associated with first-step infections and severe UTIs, respectively. As expected, highly virulent E. coli strains (belonging to the phylogenetic B2 and D groups) were dominant in the bacteremic UTI (90%) and UTI (86.27%) groups. However, our results showed that the UTI group had a significantly higher prevalence of sfa/focDE (belonging to the S and FIC fimbriae) than the bacteremic UTI group (29.4% vs 12.5%; p=0.008). In the bacteremic group, we found that sfa/focDE was only detected in highly virulent strains. The bacteremic UTI group had a significantly higher prevalence of papGII (belonging to P fimbriae) than the UTI group (55.8% vs 37.3%; p=0.026). In addition, the P fimbriae gene cluster, including papC, papEF, and papGII, was predominant in highly virulent strains. Notably, our results show that multidrug-resistant (MDR) strains were significantly less virulent than non MDR strains. Conclusion: Taken together, our results provide insights into the contributing factors in patients with UTI and urinary bacteremia.

4.
Microorganisms ; 11(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37630590

RESUMEN

Cholera, a disease caused by the Vibrio cholerae bacteria, threatens public health worldwide. The organism mentioned above has a significant historical record of being identified as a prominent aquatic environmental pollutant capable of adapting its phenotypic and genotypic traits to react to host patients effectively. This study aims to elucidate the heterogeneity of the sporadic clinical strain of V. cholerae VC01 among patients residing in Silvasa. The study involved conducting whole-genome sequencing of the isolate obtained from patients exhibiting symptoms, including those not commonly observed in clinical practice. The strain was initially identified through a combination of biochemical analysis, microscopy, and 16s rRNA-based identification, followed by type strain-based identification. The investigation demonstrated the existence of various genetic alterations and resistance profiles against multiple drugs, particularly chloramphenicol (catB9), florfenicol (floR), oxytetracycline (tet(34)), sulfonamide (sul2), and Trimethoprim (dfrA1). The pan-genomic analysis indicated that 1099 distinct clusters were detected within the genome sequences of recent isolates worldwide. The present study helps to establish a correlation between the mutation and the coexistence of antimicrobial resistance toward current treatment.

5.
Front Immunol ; 14: 1277745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146374

RESUMEN

Introduction: Pulmonary granuloma diseases caused by Mycobacterium abscessus (M. abscessus) have increased in past decades, and drug-resistance in this pathogen is a growing public health concern. Therefore, an animal model of chronic granuloma disease is urgently needed. Methods: In this study, M. abscessus embedded within agar beads (agar-AB) was used to develop such a model in C57BL/6JNarl mice. Results: Chronic infection was sustained for at least 3 months after agar-AB infection, visible granulomas spread in the lungs, and giant cells and foamy cells appeared in the granulomas. More importantly, pulmonary fibrosis progressed for 3 months, and collagen fibers were detected by Masson trichrome staining. Further, inducible nitric oxide synthase (iNOS) was highly expressed within the alveolar space, and the fibrosis-mediator transforming growth factor beta (TGF-ß) began to be expressed at 1 month. Hypoxia-inducible factor (HIF-1α) expression also increased, which aided in normalizing oxygen partial pressure. Discussion: Although the transient fibrosis persisted for only 3 months, and the pulmonary structure resolved when the pathogen was cleard, this pulmonary fibrosis model for M. abscessus infection will provide a novel test platform for development of new drugs, regimens, and therapies.


Asunto(s)
Mycobacterium abscessus , Fibrosis Pulmonar , Animales , Ratones , Mycobacterium abscessus/metabolismo , Agar/metabolismo , Ratones Endogámicos C57BL , Fibrosis , Granuloma/patología
6.
Nanomaterials (Basel) ; 12(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36144915

RESUMEN

Nanotechnology has become the most effective and rapidly developing field in the area of material science, and silver nanoparticles (AgNPs) are of leading interest because of their smaller size, larger surface area, and multiple applications. The use of plant sources as reducing agents in the fabrication of silver nanoparticles is most attractive due to the cheaper and less time-consuming process for synthesis. Furthermore, the tremendous attention of AgNPs in scientific fields is due to their multiple biomedical applications such as antibacterial, anticancer, and anti-inflammatory activities, and they could be used for clean environment applications. In this review, we briefly describe the types of nanoparticle syntheses and various applications of AgNPs, including antibacterial, anticancer, and larvicidal applications and photocatalytic dye degradation. It will be helpful to the extent of a better understanding of the studies of biological synthesis of AgNPs and their multiple uses.

7.
Antioxidants (Basel) ; 11(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36290780

RESUMEN

Ginger extracts have been shown to have health-promoting pharmacological activity and beneficial effects, including antioxidant and anticancer properties. The extraction of ginger by natural deep eutectic solvents (NaDES) has been shown to enhance bioactivity, but the cytotoxicity of NaDES extracts needs to be further determined. Signaling through the CXC chemokine receptor 4 (CXCR4) expressed on colorectal cancer (CRC) cells has a pivotal role in tumor cell chemosensitivity. Oxaliplatin is a third-generation platinum compound used as an effective chemotherapeutic drug for CRC treatment. However, whether ginger extract and oxaliplatin could induce a synergistic cytotoxic effect in oxaliplatin-resistant CRC cells through modulating CXCR4 expression is not known. In this study, oxaliplatin-resistant HCT-116 (HCT-116/R) cells were generated first. Ginger was extracted using the NaDES mixture betaine/lactate/water (1:2:2.5). Lactobacillus reuteri fermentation of NaDES-ginger extract increased the total polyphenol content (12.42 mg gallic acid/g in non-fermented NaDES-ginger extract and 23.66 mg gallic acid/g in fermented NaDES-ginger extract). It also increased the antioxidant activity by about 20−30% compared to non-fermented NaDES-ginger extract. In addition, it achieved low cytotoxicity to normal colonic mucosal cells and enhanced the anticancer effect on HCT-116/R cells. On the other hand, the inhibition of NF-κB activation by fermented NaDES-ginger extract significantly decreased the CXCR4 expression (p < 0.05) in HCT-116/R cells. The inactivation of NF-κB by pharmacological inhibitor pyrrolidine dithiocarbamate further enhanced the fermented NaDES-ginger extract-reduced CXCR4 expression levels (p < 0.05). Moreover, fermented NaDES-ginger extract could synergistically increase the cytotoxicity of oxaliplatin by inhibiting CXCR4 expression and inactivating NF-κB, resulting in HCT-116/R cell death. These findings demonstrate that fermented NaDES-ginger extract reduces the NF-kB-mediated activation of CXCR4 and enhances oxaliplatin-induced cytotoxicity in oxaliplatin-resistant CRC cells.

8.
Life (Basel) ; 12(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431025

RESUMEN

The resistance of renal cell carcinoma (RCC) to sunitinib impedes the success of chemotherapy in cancer treatment. Although several sunitinib resistance mechanisms have been proposed, little is known concerning the impact of obesity and adipokines in RCC cells. The upregulation of sterol-regulatory element-binding protein-1 (SREBP-1) has been reported to modulate the progression of tumor cells. The present study investigated the effect of visfatin on sunitinib-induced cytotoxicity in RCC cells through SREBP-1 expression. We found that visfatin-induced Akt and p70S6K activation increased SREBP-1 expression in 786-O cells. The visfatin-induced SREBP-1 mRNA and protein levels were attenuated through the inactivation of Akt and p70S6K by pharmacological inhibitors. In addition, the SREBP-1 knockdown using siRNA enhanced the cytotoxic effects of sunitinib. Our results also revealed the roles of simvastatin in attenuating the effects of visfatin on 786-O cells by inhibiting the production of reactive oxygen species. In particular, simvastatin co-treatment increased the cell cytotoxicity of sunitinib in visfatin-treated 786-O cells, which were associated with down-regulation of SREBP-1 expression. Our results suggest an important role of SREBP-1 in visfatin-induced drug resistance of RCC cells to sunitinib. The cytotoxic mechanism of simvastatin on RCC cells may provide a new strategy to improve therapeutic outcomes for the RCC treatment.

9.
Sci Rep ; 12(1): 21023, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470924

RESUMEN

Odontogenic rhinosinusitis is a subtype of rhinosinusitis associated with dental infection or dental procedures and has special bacteriologic features. Previous research on the bacteriologic features of odontogenic rhinosinusitis has mainly used culture-dependent methods. The variation of microbiota between odontogenic and nonodontogenic rhinosinusitis as well as the interplay between the involved bacteria have not been explored. Therefore, we enrolled eight odontogenic rhinosinusitis cases and twenty nonodontogenic rhinosinusitis cases to analyze bacterial microbiota through 16S rRNA sequencing. Significant differences were revealed by the Shannon diversity index (Wilcoxon test p = 0.0003) and PERMANOVA test based on weighted UniFrac distance (Wilcoxon test p = 0.001) between odontogenic and nonodontogenic samples. Anaerobic bacteria such as Porphyromonas, Fusobacterium, and Prevotella were significantly dominant in the odontogenic rhinosinusitis group. Remarkably, a correlation between different bacteria was also revealed by Pearson's correlation. Staphylococcus was highly positively associated with Corynebacterium, whereas Fusobacterium was highly negatively correlated with Prophyromonas. According to our results, the microbiota in odontogenic rhinosinusitis, predominantly anaerobic bacteria, was significantly different from that in nonodontogenic rhinosinusitis, and the interplay between specific bacteria may a major cause of this subtype of rhinosinusitis.


Asunto(s)
Microbiota , Sinusitis , Humanos , Disbiosis/complicaciones , Disbiosis/microbiología , ARN Ribosómico 16S/genética , Bacterias Anaerobias/genética , Sinusitis/complicaciones , Sinusitis/microbiología , Bacterias/genética , Fusobacterium/genética
12.
Microorganisms ; 9(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33805851

RESUMEN

Mycobacterium abscessus is an opportunistic pathogen causing human diseases, especially in immunocompromised patients. M. abscessus strains with a rough morphotype are more virulent than those with a smooth morphotype. Morphotype switch may occur during a clinical infection. To investigate the genes involved in colony morphotype switching, we performed transposon mutagenesis in a rough clinical strain of M. abscessus. A morphotype switching mutant (smooth) named mab_3083c::Tn was obtained. This mutant was found to have a lower aggregative ability and a higher sliding motility than the wild type strain. However, its glycopeptidolipid (GPL) content remained the same as those of the wild type. Complementation of the mutant with a functional mab_3083c gene reverted its morphotype back to rough, indicating that mab_3083c is associated with colony morphology of M. abscessus. Bioinformatic analyses showed that mab_3083c has a 75.4% identity in amino acid sequence with the well-characterized ribonuclease J (RNase J) of M. smegmatis (RNase JMsmeg). Complementation of the mutant with the RNase J gene of M. smegmatis also switched its colony morphology from smooth back to rough. These results suggest that Mab_3083c is a homologue of RNase J and involved in regulating M. abscessus colony morphotype switching.

13.
J Inflamm Res ; 14: 3781-3795, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408462

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus which caused a global respiratory disease pandemic beginning in December 2019. Understanding the pathogenesis of infection and the immune responses in a SARS-CoV-2-infected animal model is urgently needed for vaccine development. METHODS: Syrian hamsters (Mesocricetus auratus) were intranasally inoculated with 105, 5×105, and 106 TCID50 of SARS-CoV-2 per animal and studied for up to 14 days. Body weight, viral load and real-time PCR amplification of the SARS-CoV-2 N gene were measured. On days 3, 6 and 9, lung, blood, liver, pancreas, heart, kidney, and bone marrow were harvested and processed for pathology, viral load, and cytokine expression. RESULTS: Body weight loss, increased viral load, immune cell infiltration, upregulated cytokine expression, viral RNA, SARS-CoV-2 nucleoprotein, and mucus were detected in the lungs, particularly on day 3 post-infection. Extremely high expression of the pro-inflammatory cytokines MIP-1 and RANTES was detected in lung tissue, as was high expression of IL-1ß, IL-6, IL-12, and PD-L1. The glutamic oxalacetic transaminase/glutamic pyruvic transaminase (GOT/GPT) ratio in blood was significantly increased at 6 days post-infection, and plasma amylase and lipase levels were also elevated in infected hamsters. CONCLUSION: Our results provide new information on immunological cytokines and biological parameters related to the pathogenesis and immune response profile in the Syrian hamster model of SARS-CoV-2 infection.

14.
Front Pharmacol ; 12: 746496, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899300

RESUMEN

Tuberculosis (TB) is a leading cause of death from a single infectious agent, Mycobacterium tuberculosis (Mtb). Although progress has been made in TB control, still about 10 million people worldwide develop TB annually and 1.5 million die of the disease. The rapid emergence of aggressive, drug-resistant strains and latent infections have caused TB to remain a global health challenge. TB treatments are lengthy and their side effects lead to poor patient compliance, which in turn has contributed to the drug resistance and exacerbated the TB epidemic. The relatively low output of newly approved antibiotics has spurred research interest toward alternative antibacterial molecules such as silver nanoparticles (AgNPs). In the present study, we use the natural biopolymer alginate to serve as a stabilizer and/or reductant to green synthesize AgNPs, which improves their biocompatibility and avoids the use of toxic chemicals. The average size of the alginate-capped AgNPs (ALG-AgNPs) was characterized as nanoscale, and the particles were round in shape. Drug susceptibility tests showed that these ALG-AgNPs are effective against both drug-resistant Mtb strains and dormant Mtb. A bacterial cell-wall permeability assay showed that the anti-mycobacterial action of ALG-AgNPs is mediated through an increase in cell-wall permeability. Notably, the anti-mycobacterial potential of ALG-AgNPs was effective in both zebrafish and mouse TB animal models in vivo. These results suggest that ALG-AgNPs could provide a new therapeutic option to overcome the difficulties of current TB treatments.

15.
Microbiology (Reading) ; 156(Pt 9): 2842-2854, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20522496

RESUMEN

Xanthomonas campestris pv. campestris (Xcc) is the phytopathogen that causes black rot in crucifers. The xanthan polysaccharide and extracellular enzymes produced by this organism are virulence factors, the expression of which is upregulated by Clp (CRP-like protein) and DSF (diffusible signal factor), which is synthesized by RpfF. It is also known that biofilm formation/dispersal, regulated by the effect of controlled synthesis of DSF on cell-cell signalling, is required for virulence. Furthermore, a deficiency in DSF causes cell aggregation with concomitant production of a gum-like substance that can be dispersed by addition of DSF or digested by exogenous endo-beta-1,4-mannanase expressed by Xcc. In this study, Western blotting of proteins from a mopB mutant (XcMopB) showed Xcc MopB to be the major outer-membrane protein (OMP); Xcc MopB shared over 97 % identity with homologues from other members of Xanthomonas. Similarly to the rpfF mutant, XcMopB formed aggregates with simultaneous production of a gummy substance, but these aggregates could not be dispersed by DSF or endo-beta-1,4-mannanase, indicating that different mechanisms were involved in aggregation. In addition, XcMopB showed surface deformation, altered OMP composition, impaired xanthan production, increased sensitivity to stressful conditions including SDS, elevated temperature and changes in pH, reduced adhesion and motility and defects in pathogenesis. The finding that the major OMP is required for pathogenicity is unprecedented in phytopathogenic bacteria.


Asunto(s)
Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Mutación , Factores de Virulencia/genética , Xanthomonas campestris/fisiología , Xanthomonas campestris/patogenicidad , Proteínas de la Membrana Bacteriana Externa/metabolismo , Brassica/microbiología , Membrana Celular/genética , Membrana Celular/metabolismo , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/microbiología , Factores de Virulencia/metabolismo , Xanthomonas campestris/clasificación , Xanthomonas campestris/genética
16.
Front Immunol ; 11: 1298, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655570

RESUMEN

Pulmonary tuberculosis (TB) is a difficult-to-eliminate disease. Although the Bacille Calmette-Guérin (BCG) vaccine against Mycobacterium tuberculosis (MTB) has been available for decades, its efficacy is variable and has lessened over time. Furthermore, the BCG vaccine no longer protects against newly emerged Beijing strains which are responsible for many current infections in adults. Development of a novel vaccine is urgently needed. In this study, we first tested the efficacy of our recombinant BCG vaccines rBCG1 and rBCG2, compared to parental BCG, against MTB strain H37Ra in mice. Both the bacterial load and the level of lymphocyte infiltration decreased dramatically in the three groups treated with vaccine, especially rBCG1 and rBCG2. Furthermore, the Th1 and Th17 responses increased and macrophage numbers rose in the vaccination groups. Th1-mediated production of cytokines TNF-α, IFN-γ, and MCP-1 as well as M1-polarized cells all increased in lung tissue of the rBCG1 and rBCG2 groups. Clodronate-induced depletion of macrophages reduced the level of protection. Based on these results, we conclude that rBCG vaccines induce a significant increase in the number of M1 macrophages, which augments their potential as TB vaccine candidates.


Asunto(s)
Vacuna BCG/inmunología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Macrófagos/efectos de los fármacos , Ratones , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Vacunas Sintéticas/inmunología
17.
Sci Rep ; 10(1): 11046, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632240

RESUMEN

Little is known about the composition and clinical implications of lung microbiome in patients with chronic obstructive pulmonary disease (COPD) and community-acquired pneumonia requiring invasive mechanical ventilation and intensive care unit admission. Therefore, this study aimed to explore the longitudinal changes in microbial airway composition and its variations between COPD patients with different weaning outcomes. Fifty-one endotracheal aspirate samples from 21 participants and 5 saline samples were collected as the patient and control group, respectively. Sequence analysis revealed significant increases and upward trends in the relative abundance of the Acinetobacter genus and Acinetobacter baumannii complex species in paired comparisons of sampling points and over time, respectively, in patients with failed weaning (p for trend = 0.012 and 0.012, respectively) but not in those with successful weaning (p for trend = 0.335 and 0.426, respectively). Furthermore, significant changes in the composition of the bacterial community were observed in paired comparisons of sampling points in patients with failed weaning compared with those with successful weaning. The alpha diversity did not differ between the patients with different weaning outcomes. These results further the understanding of longitudinal airway microbiome structure analysis and its clinical implications when managing critically ill patients with and without COPD.


Asunto(s)
Infecciones Comunitarias Adquiridas/microbiología , Pulmón/microbiología , Microbiota , Neumonía/microbiología , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Infecciones Comunitarias Adquiridas/terapia , Cuidados Críticos , Humanos , Estudios Longitudinales , Masculino , Neumonía/terapia , Estudios Prospectivos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Respiración Artificial , Desconexión del Ventilador
18.
Gut Pathog ; 11: 11, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30828389

RESUMEN

BACKGROUND: In Asia, serotype K1/K2 Klebsiella pneumoniae are the major capsular serotypes that cause liver abscess or bacteremia in patients. The purpose of this study was to compare novel immunochromatographic strips (ICSs), which can rapidly detect K. pneumoniae serotypes K1/K2 in clinical samples, to conventional capsular serotyping methods. METHODS: Pus drainage samples from 16 patients with a liver abscess caused by K. pneumoniae, blood samples from 112 positive flagged blood culture bottle and a subsequent single colony in the medium were tested with the ICS. The results were then compared to findings of capsular swelling tests. Samples subjected to the polymerase chain reaction (PCR) analysis were used as reference. RESULTS: The identification of K. pneumoniae via the traditional bacterial culture from pus samples took 3.4 days on average (ranging from 2.2 to 5.5 days). Further capsular serotyping of K. pneumoniae by the capsular swelling test of pure isolates lasted 5-10 min, and the PCR method took ~ 4 h. As for ICSs, the time for direct identification of the K. pneumoniae capsular serotype K1/K2 in pus was < 4 min (ranging from 2 to 4 min). The results of ICSs were consistent with capsular swelling tests and PCR methods. Testing of 112 blood culture samples and subsequent single colonies in the medium with ICSs yielded consistent results for most samples. CONCLUSIONS: This study indicates that ICSs can rapidly detect K. pneumoniae serotypes K1 and K2 in pus or positive flagged blood culture broth samples within 5 min. Their accuracy is comparable to that of the conventional capsular serotyping methods such as a serum agglutination assay or PCR.

19.
J Clin Med ; 8(11)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739506

RESUMEN

Fungal rhinosinusitis is a unique phenotype of chronic rhinosinusitis with unique clinical and histological characteristics. The role of bacterial microbiota in various phenotypes chronic rhinosinusitis is not thoroughly understood. Therefore, we conducted 16s rRNA amplification sequencing to determine differences in bacterial communities between phenotypes (fungal vs. non- fungal) and anatomical sites (middle meatus vs. nasopharynx). Endoscope-guided swabs were used to collect samples from the middle meatus and nasopharynx of seven consecutive patients with fungal and 18 consecutive patients with non-fungal rhinosinusitis. DNA was extracted and investigated through 16S rRNA amplification. Among samples from the middle meatus, Shannon diversity was significantly lower in those from the fungal rhinosinusitis group (p = 0.029). However, no significant differences in diversity were noted between nasopharynx samples (p = 0.85). Fungal rhinosinusitis samples exhibited a distinct distribution of taxon relative abundance, which involved not only the absence of rhinosinusitis-associated commensal Corynebacterium and Fusobacterium in the middle meatus but also a significant increase in Haemophilus prevalence and abundance. This is the first study to compare bacterial communities in fungal and non-fungal rhinosinusitis samples. Our findings demonstrated that bacterial community dysbiosis was more apparent in fungal rhinosinusitis samples and was limited to the middle meatus.

20.
Front Med (Lausanne) ; 6: 288, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31867338

RESUMEN

Urinary tract infection (UTI) is a common complication in patients with urolithiasis. This study aimed to compare clinical manifestations and treatment outcomes among UTI patients with or without urolithiasis. It also focused on identifying relationships among urolithiasis, uroseptic shock, and acute kidney injury (AKI). This retrospective study enrolled hospitalized UTI patients who underwent imaging in an acute care setting from January 2006 to March 2015. Of 662 participants enrolled, 113 (17.1%) had urolithiasis, 107 (16.2%) developed uroseptic shock, and 184 (27.8%) developed AKI. A multivariate logistic regression analysis showed that in UTI patients, urolithiasis is associated with an increased risk of uroseptic shock (OR 1.80, 95% CI: 1.08-3.02, P = 0.025), AKI (OR 1.95, 95% CI: 1.22-3.12, P = 0.005), and bacteremia (OR 1.68, 95% CI: 1.08-2.64, P = 0.022). Urolithiasis is common in UTI patients and is associated with an increased risk of uroseptic shock and AKI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA