Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(5): 1156-1169.e12, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795415

RESUMEN

Dysregulated microglia are intimately involved in neurodegeneration, including Alzheimer's disease (AD) pathogenesis, but the mechanisms controlling pathogenic microglial gene expression remain poorly understood. The transcription factor CCAAT/enhancer binding protein beta (c/EBPß) regulates pro-inflammatory genes in microglia and is upregulated in AD. We show expression of c/EBPß in microglia is regulated post-translationally by the ubiquitin ligase COP1 (also called RFWD2). In the absence of COP1, c/EBPß accumulates rapidly and drives a potent pro-inflammatory and neurodegeneration-related gene program, evidenced by increased neurotoxicity in microglia-neuronal co-cultures. Antibody blocking studies reveal that neurotoxicity is almost entirely attributable to complement. Remarkably, loss of a single allele of Cebpb prevented the pro-inflammatory phenotype. COP1-deficient microglia markedly accelerated tau-mediated neurodegeneration in a mouse model where activated microglia play a deleterious role. Thus, COP1 is an important suppressor of pathogenic c/EBPß-dependent gene expression programs in microglia.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Ligasas/metabolismo , Microglía/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/genética , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Técnicas de Cocultivo/métodos , Femenino , Expresión Génica/fisiología , Regulación de la Expresión Génica/fisiología , Células HEK293 , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
2.
Mol Cell ; 82(4): 716-727, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35016034

RESUMEN

Protein acetylation is conserved across phylogeny and has been recognized as one of the most prominent post-translational modifications since its discovery nearly 60 years ago. Histone acetylation is an active mark characteristic of open chromatin, but acetylation on specific lysine residues and histone variants occurs in different biological contexts and can confer various outcomes. The significance of acetylation events is indicated by the associations of lysine acetyltransferases, deacetylases, and acetyl-lysine readers with developmental disorders and pathologies. Recent advances have uncovered new roles of acetylation regulators in chromatin-centric events, which emphasize the complexity of these functional networks. In this review, we discuss mechanisms and dynamics of acetylation in chromatin organization and DNA-templated processes, including gene transcription and DNA repair and replication.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Cromatina/genética , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Histonas/genética , Humanos , Lisina , Transcripción Genética
3.
Nature ; 579(7798): 274-278, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103181

RESUMEN

Despite the resounding clinical success in cancer treatment of antibodies that block the interaction of PD1 with its ligand PDL11, the mechanisms involved remain unknown. A major limitation to understanding the origin and fate of T cells in tumour immunity is the lack of quantitative information on the distribution of individual clonotypes of T cells in patients with cancer. Here, by performing deep single-cell sequencing of RNA and T cell receptors in patients with different types of cancer, we survey the profiles of various populations of T cells and T cell receptors in tumours, normal adjacent tissue, and peripheral blood. We find clear evidence of clonotypic expansion of effector-like T cells not only within the tumour but also in normal adjacent tissue. Patients with gene signatures of such clonotypic expansion respond best to anti-PDL1 therapy. Notably, expanded clonotypes found in the tumour and normal adjacent tissue can also typically be detected in peripheral blood, which suggests a convenient approach to patient identification. Analyses of our data together with several external datasets suggest that intratumoural T cells, especially in responsive patients, are replenished with fresh, non-exhausted replacement cells from sites outside the tumour, suggesting continued activity of the cancer immunity cycle in these patients, the acceleration of which may be associated with clinical response.


Asunto(s)
Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/patología , Variantes Farmacogenómicas , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/citología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Células Clonales , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Linfocitos T/metabolismo , Transcriptoma
4.
Phys Rev Lett ; 132(19): 196402, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804933

RESUMEN

Chiral crystals and molecules were recently predicted to form an intriguing platform for unconventional orbital physics. Here, we report the observation of chirality-driven orbital textures in the bulk electronic structure of CoSi, a prototype member of the cubic B20 family of chiral crystals. Using circular dichroism in soft x-ray angle-resolved photoemission, we demonstrate the formation of a bulk orbital-angular-momentum texture and monopolelike orbital-momentum locking that depends on crystal handedness. We introduce the intrinsic chiral circular dichroism, icCD, as a differential photoemission observable and a natural probe of chiral electron states. Our findings render chiral crystals promising for spin-orbitronics applications.

5.
Proc Natl Acad Sci U S A ; 115(44): 11244-11249, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30322923

RESUMEN

The E3 ubiquitin ligase CRL4COP1/DET1 is active in the absence of ERK signaling, modifying the transcription factors ETV1, ETV4, ETV5, and c-JUN with polyubiquitin that targets them for proteasomal degradation. Here we show that this posttranslational regulatory mechanism is active in neurons, with ETV5 and c-JUN accumulating within minutes of ERK activation. Mice with constitutive photomorphogenesis 1 (Cop1) deleted in neural stem cells showed abnormally elevated expression of ETV1, ETV4, ETV5, and c-JUN in the developing brain and spinal cord. Expression of c-JUN target genes Vimentin and Gfap was increased, whereas ETV5 and c-JUN both contributed to an expanded number of cells expressing genes associated with gliogenesis, including Olig1, Olig2, and Sox10. The mice had subtle morphological abnormalities in the cerebral cortex, hippocampus, and cerebellum by embryonic day 18 and died soon after birth. Elevated c-JUN, ETV5, and ETV1 contributed to the perinatal lethality, as several Cop1-deficient mice also lacking c-Jun and Etv5, or lacking Etv5 and heterozygous for Etv1, were viable.


Asunto(s)
Encéfalo/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factores de Transcripción/metabolismo
6.
J Am Soc Nephrol ; 31(10): 2341-2354, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651223

RESUMEN

BACKGROUND: The glomerulus is a specialized capillary bed that is involved in urine production and BP control. Glomerular injury is a major cause of CKD, which is epidemic and without therapeutic options. Single-cell transcriptomics has radically improved our ability to characterize complex organs, such as the kidney. Cells of the glomerulus, however, have been largely underrepresented in previous single-cell kidney studies due to their paucity and intractability. METHODS: Single-cell RNA sequencing comprehensively characterized the types of cells in the glomerulus from healthy mice and from four different disease models (nephrotoxic serum nephritis, diabetes, doxorubicin toxicity, and CD2AP deficiency). RESULTS: All cell types in the glomerulus were identified using unsupervised clustering analysis. Novel marker genes and gene signatures of mesangial cells, vascular smooth muscle cells of the afferent and efferent arterioles, parietal epithelial cells, and three types of endothelial cells were identified. Analysis of the disease models revealed cell type-specific and injury type-specific responses in the glomerulus, including acute activation of the Hippo pathway in podocytes after nephrotoxic immune injury. Conditional deletion of YAP or TAZ resulted in more severe and prolonged proteinuria in response to injury, as well as worse glomerulosclerosis. CONCLUSIONS: Generation of comprehensive high-resolution, single-cell transcriptomic profiles of the glomerulus from healthy and injured mice provides resources to identify novel disease-related genes and pathways.


Asunto(s)
Enfermedades Renales/etiología , Glomérulos Renales/patología , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/metabolismo , Células Mesangiales/patología , Ratones , Ratones Endogámicos C57BL , Podocitos/patología
7.
Breast Cancer Res ; 21(1): 152, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31881983

RESUMEN

BACKGROUND: PIK3CA mutations are frequent in human breast cancer. Pik3caH1047R mutant expression in mouse mammary gland promotes tumorigenesis. TP53 mutations co-occur with PIK3CA mutations in human breast cancers. We previously generated a conditionally activatable Pik3caH1047R;MMTV-Cre mouse model and found a few malignant sarcomatoid (spindle cell) carcinomas that had acquired spontaneous dominant-negative Trp53 mutations. METHODS: A Pik3caH1047R;Trp53R270H;MMTV-Cre double mutant mouse breast cancer model was generated. Tumors were characterized by histology, marker analysis, transcriptional profiling, single-cell RNA-seq, and bioinformatics. Cell lines were developed from mutant tumors and used to identify and confirm genes involved in metastasis. RESULTS: We found Pik3caH1047R and Trp53R270H cooperate in driving oncogenesis in mammary glands leading to a shorter latency than either alone. Double mutant mice develop multiple histologically distinct mammary tumors, including adenocarcinoma and sarcomatoid (spindle cell) carcinoma. We found some tumors to be invasive and a few metastasized to the lung and/or the lymph node. Single-cell RNA-seq analysis of the tumors identified epithelial, stromal, myeloid, and T cell groups. Expression analysis of the metastatic tumors identified S100a4 as a top candidate gene associated with metastasis. Metastatic tumors contained a much higher percentage of epithelial-mesenchymal transition (EMT)-signature positive and S100a4-expressing cells. CRISPR/CAS9-mediated knockout of S100a4 in a metastatic tumor-derived cell line disrupted its metastatic potential indicating a role for S100a4 in metastasis. CONCLUSIONS: Pik3caH1047R;Trp53R270H;MMTV-Cre mouse provides a preclinical model to mimic a subtype of human breast cancers that carry both PIK3CA and TP53 mutations. It also allows for understanding the cooperation between the two mutant genes in tumorigenesis. Our model also provides a system to study metastasis and develop therapeutic strategies for PIK3CA/TP53 double-positive cancers. S100a4 found involved in metastasis in this model can be a potential diagnostic and therapeutic target.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Neoplasias Mamarias Experimentales/etiología , Neoplasias Mamarias Experimentales/metabolismo , Virus del Tumor Mamario del Ratón , Mutación , Proteína de Unión al Calcio S100A4/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Infecciones Tumorales por Virus/complicaciones , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Transformación Celular Viral , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Femenino , Marcación de Gen , Humanos , Neoplasias Mamarias Experimentales/patología , Ratones , Proteína p53 Supresora de Tumor/genética , Infecciones Tumorales por Virus/virología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
PLoS Genet ; 12(10): e1006408, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27792779

RESUMEN

In eukaryotic cells, ribosomal RNAs (rRNAs) are transcribed, processed, and assembled with ribosomal proteins in the nucleolus. Regulatory mechanisms of rRNA gene (rDNA) transcription and processing remain elusive in plants, especially their connection to nucleolar organization. We performed an in silico screen for essential genes of unknown function in Arabidopsis thaliana and identified Thallo (THAL) encoding a SAS10/C1D family protein. THAL disruption caused enlarged nucleoli in arrested embryos, aberrant processing of precursor rRNAs at the 5' External Transcribed Spacer, and repression of the major rDNA variant (VAR1). THAL overexpression lines showed de-repression of VAR1 and overall reversed effects on rRNA processing sites. Strikingly, THAL overexpression also induced formation of multiple nucleoli per nucleus phenotypic of mutants of heterochromatin factors. THAL physically associated with histone chaperone Nucleolin 1 (NUC1), histone-binding NUC2, and histone demethylase Jumonji 14 (JMJ14) in bimolecular fluorescence complementation assay, suggesting that it participates in chromatin regulation. Furthermore, investigation of truncated THAL proteins revealed that the SAS10 C-terminal domain is likely important for its function in chromatin configuration. THAL also interacted with putative Small Subunit processome components, including previously unreported Arabidopsis homologue of yeast M Phase Phosphoprotein 10 (MPP10). Our results uncovering the dual role of THAL in transcription and processing events critical for proper rRNA biogenesis and nucleolar organization during reproduction are the first to define the function of SAS10/C1D family members in plants.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/genética , ARN Ribosómico/biosíntesis , Transcripción Genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Nucléolo Celular/genética , Cromatina/genética , Regulación de la Expresión Génica de las Plantas/genética , Heterocromatina/genética , Histonas/genética , Histona Demetilasas con Dominio de Jumonji/biosíntesis , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico/genética , Reproducción/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
9.
BMC Genomics ; 18(1): 519, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687070

RESUMEN

BACKGROUND: Technological advances have enabled transcriptome characterization of cell types at the single-cell level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression profiling are highly desirable. RESULTS: Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8 has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells. CONCLUSIONS: Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells, allowing researchers to decipher single-cell transcriptomes within complex biological samples.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nanotecnología/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Análisis de Matrices Tisulares/métodos , Línea Celular , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(23): 9197-202, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615385

RESUMEN

Drought-induced proline accumulation is widely observed in plants but its regulation and adaptive value are not as well understood. Proline accumulation of the Arabidopsis accession Shakdara (Sha) was threefold less than that of Landsberg erecta (Ler) and quantitative trait loci mapping identified a reduced function allele of the proline synthesis enzyme Δ(1)-pyrroline-5-carboxylate synthetase1 (P5CS1) as a basis for the lower proline of Sha. Sha P5CS1 had additional TA repeats in intron 2 and a G-to-T transversion in intron 3 that were sufficient to promote alternative splicing and production of a nonfunctional transcript lacking exon 3 (exon 3-skip P5CS1). In Sha, and additional accessions with the same intron polymorphisms, the nonfunctional exon 3-skip P5CS1 splice variant constituted as much as half of the total P5CS1 transcript. In a larger panel of Arabidopsis accessions, low water potential-induced proline accumulation varied by 10-fold and variable production of exon 3-skip P5CS1 among accessions was an important, but not the sole, factor underlying variation in proline accumulation. Population genetic analyses suggest that P5CS1 may have evolved under positive selection, and more extensive correlation of exon 3-skip P5CS1 production than proline abundance with climate conditions of natural accessions also suggest a role of P5CS1 in local adaptation to the environment. These data identify a unique source of alternative splicing in plants, demonstrate a role of exon 3-skip P5CS1 in natural variation of proline metabolism, and suggest an association of P5CS1 and its alternative splicing with environmental adaptation.


Asunto(s)
Adaptación Biológica/genética , Empalme Alternativo/genética , Arabidopsis/genética , Clima , Ornitina-Oxo-Ácido Transaminasa/genética , Prolina/biosíntesis , Western Blotting , Clonación Molecular , Biología Computacional , Cartilla de ADN/genética , Genética de Población , Haplotipos/genética , Intrones/genética , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Plantas Modificadas Genéticamente , Prolina/metabolismo , Sitios de Carácter Cuantitativo/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
bioRxiv ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38585845

RESUMEN

Despite recent advances in therapeutic treatments, multiple myeloma (MM) remains an incurable malignancy. Epigenetic factors contribute to the initiation, progression, relapse, and clonal heterogeneity in MM, but our knowledge on epigenetic mechanisms underlying MM development is far from complete. The SAGA complex serves as a coactivator in transcription and catalyzes acetylation and deubiquitylation. Analyses of datasets in the Cancer Dependency Map Project revealed many SAGA components are selective dependencies in MM. To define SAGA-specific functions, we focused on ADA2B, the only subunit in the lysine acetyltransferase (KAT) module that specifically functions in SAGA. Integration of RNA-seq, ATAC-seq, and CUT&RUN results identified pathways directly regulated by ADA2B include MTORC1 signaling, MYC, E2F, and MM-specific MAF oncogenic programs. We discovered that ADA2B is recruited to MAF and MYC gene targets, and that MAF shares a majority of its targets with MYC in MM cells. Furthermore, we found the SANT domain of ADA2B is required for interaction with both GCN5 and PCAF acetyltransferases, incorporation into SAGA, and ADA2B protein stability. Our findings uncover previously unknown SAGA KAT module-dependent mechanisms controlling MM cell growth, revealing a vulnerability that might be exploited for future development of MM therapy.

12.
Sci Adv ; 10(22): eadm9449, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820154

RESUMEN

Pediatric cancers are frequently driven by genomic alterations that result in aberrant transcription factor activity. Here, we used functional genomic screens to identify multiple genes within the transcriptional coactivator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex as selective dependencies for MYCN-amplified neuroblastoma, a disease of dysregulated development driven by an aberrant oncogenic transcriptional program. We characterized the DNA recruitment sites of the SAGA complex in neuroblastoma and the consequences of loss of SAGA complex lysine acetyltransferase (KAT) activity on histone acetylation and gene expression. We demonstrate that loss of SAGA complex KAT activity is associated with reduced MYCN binding on chromatin, suppression of MYC/MYCN gene expression programs, and impaired cell cycle progression. Further, we showed that the SAGA complex is pharmacologically targetable in vitro and in vivo with a KAT2A/KAT2B proteolysis targeting chimeric. Our findings expand our understanding of the histone-modifying complexes that maintain the oncogenic transcriptional state in this disease and suggest therapeutic potential for inhibitors of SAGA KAT activity in MYCN-amplified neuroblastoma.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteína Proto-Oncogénica N-Myc , Neuroblastoma , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Línea Celular Tumoral , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Acetilación , Histonas/metabolismo , Animales , Amplificación de Genes , Cromatina/metabolismo , Cromatina/genética , Ratones
13.
Ultramicroscopy ; 253: 113820, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586245

RESUMEN

Fermi surfaces of transition metals, which describe all thermodynamical and transport quantities of solids, often fail to be modeled by one-electron mean-field theory due to strong correlations among the valence electrons. In addition, relativistic spin-orbit coupling pronounced in heavier elements lifts the degeneracy of the energy bands and further modifies the Fermi surface. Palladium and rhodium, two 4d metals attributed to show significant spin-orbit coupling and electron correlations, are ideal for a systematic and fundamental study of the two fundamental physical phenomena and their interplay in the electronic structure. In this study, we explored the Fermi surface of the 4d noble metals palladium and rhodium obtained via high-resolution constant initial state momentum microscopy. The complete 3D-Fermi surfaces of palladium and rhodium were tomographically mapped using soft X-ray photon energies from 34 eV up to 660 eV. To fully capture the orbital angular momentum of states across the Fermi surface, the Fermi surface tomography was performed using p- and s- polarized light. Applicability and limitations of the nearly-free electron final state model in photoemission are discussed using a complex band structure model supported by experimental evidence. The significance of spin-orbit coupling and electron correlations across the Fermi surfaces will be discussed within the context of the photoemission results. State-of-the-art fully relativistic Korringa-Kohn-Rostoker (KKR) calculations within the one-step model of photoemission are used to support the experimental results.

14.
Cell Rep Med ; 4(1): 100878, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36599350

RESUMEN

Although immune checkpoint inhibitors (ICIs) are established as effective cancer therapies, overcoming therapeutic resistance remains a critical challenge. Here we identify interleukin 6 (IL-6) as a correlate of poor response to atezolizumab (anti-PD-L1) in large clinical trials of advanced kidney, breast, and bladder cancers. In pre-clinical models, combined blockade of PD-L1 and the IL-6 receptor (IL6R) causes synergistic regression of large established tumors and substantially improves anti-tumor CD8+ cytotoxic T lymphocyte (CTL) responses compared with anti-PD-L1 alone. Circulating CTLs from cancer patients with high plasma IL-6 display a repressed functional profile based on single-cell RNA sequencing, and IL-6-STAT3 signaling inhibits classical cytotoxic differentiation of CTLs in vitro. In tumor-bearing mice, CTL-specific IL6R deficiency is sufficient to improve anti-PD-L1 activity. Thus, based on both clinical and experimental evidence, agents targeting IL-6 signaling are plausible partners for combination with ICIs in cancer patients.


Asunto(s)
Antineoplásicos , Interleucina-6 , Neoplasias , Animales , Ratones , Antineoplásicos/uso terapéutico , Antígeno B7-H1/inmunología , Antígeno B7-H1/uso terapéutico , Linfocitos T CD8-positivos/metabolismo , Inmunoterapia , Interleucina-6/metabolismo , Neoplasias/inmunología , Neoplasias/terapia
15.
Nat Commun ; 13(1): 5309, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085323

RESUMEN

The discovery of topological states of matter has led to a revolution in materials research. When external or intrinsic parameters break symmetries, global properties of topological materials change drastically. A paramount example is the emergence of Weyl nodes under broken inversion symmetry. While a rich variety of non-trivial quantum phases could in principle also originate from broken time-reversal symmetry, realizing systems that combine magnetism with complex topological properties is remarkably elusive. Here, we demonstrate that giant open Fermi arcs are created at the surface of ultrathin hybrid magnets where the Fermi-surface topology is substantially modified by hybridization with a heavy-metal substrate. The interplay between magnetism and topology allows us to control the shape and the location of the Fermi arcs by tuning the magnetization direction. The hybridization points in the Fermi surface can be attributed to a non-trivial mixed topology and induce hot-spots in the Berry curvature, dominating spin and charge transport as well as magneto-electric coupling effects.

16.
Epigenetics Chromatin ; 14(1): 26, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112237

RESUMEN

The SAGA complex is an evolutionarily conserved transcriptional coactivator that regulates gene expression through its histone acetyltransferase and deubiquitylase activities, recognition of specific histone modifications, and interactions with transcription factors. Multiple lines of evidence indicate the existence of distinct variants of SAGA among organisms as well as within a species, permitting diverse functions to dynamically regulate cellular pathways. Our co-expression analysis of genes encoding human SAGA components showed enrichment in reproductive organs, brain tissues and the skeletal muscle, which corresponds to their established roles in developmental programs, emerging roles in neurodegenerative diseases, and understudied functions in specific cell types. SAGA subunits modulate growth, development and response to various stresses from yeast to plants and metazoans. In metazoans, SAGA further participates in the regulation of differentiation and maturation of both innate and adaptive immune cells, and is associated with initiation and progression of diseases including a broad range of cancers. The evolutionary conservation of SAGA highlights its indispensable role in eukaryotic life, thus deciphering the mechanisms of action of SAGA is key to understanding fundamental biological processes throughout evolution. To illuminate the diversity and conservation of this essential complex, here we discuss variations in composition, essentiality and co-expression of component genes, and its prominent functions across Fungi, Plantae and Animalia kingdoms.


Asunto(s)
Histona Acetiltransferasas , Animales , Secuencia Conservada , Histona Acetiltransferasas/metabolismo , Humanos , Plantas , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
17.
Cell Rep ; 37(13): 110158, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965428

RESUMEN

Non-neuronal responses in neurodegenerative disease have received increasing attention as important contributors to disease pathogenesis and progression. Here we utilize single-cell RNA sequencing to broadly profile 13 cell types in three different mouse models of Alzheimer disease (AD), capturing the effects of tau-only, amyloid-only, or combined tau-amyloid pathology. We highlight microglia, oligodendrocyte, astrocyte, and T cell responses and compare them across these models. Notably, we identify two distinct transcriptional states for oligodendrocytes emerging differentially across disease models, and we determine their spatial distribution. Furthermore, we explore the impact of Trem2 deletion in the context of combined pathology. Trem2 knockout mice exhibit severely blunted microglial responses to combined tau and amyloid pathology, but responses from non-microglial cell types (oligodendrocytes, astrocytes, and T cells) are relatively unchanged. These results delineate core transcriptional states that are engaged in response to AD pathology, and how they are influenced by a key AD risk gene, Trem2.


Asunto(s)
Enfermedad de Alzheimer/patología , Amiloide/química , Astrocitos/patología , Glicoproteínas de Membrana/fisiología , Oligodendroglía/patología , Receptores Inmunológicos/fisiología , Linfocitos T/inmunología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Animales , Astrocitos/inmunología , Astrocitos/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligodendroglía/inmunología , Oligodendroglía/metabolismo
18.
Cancers (Basel) ; 13(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34503086

RESUMEN

Usp22 overexpression is observed in several human cancers and is correlated with poor patient outcomes. The molecular basis underlying this correlation is not clear. Usp22 is the catalytic subunit of the deubiquitylation module in the SAGA histone-modifying complex, which regulates gene transcription. Our previous work demonstrated that the loss of Usp22 in mice leads to decreased expression of several components of receptor tyrosine kinase and TGFß signaling pathways. To determine whether these pathways are upregulated when Usp22 is overexpressed, we created a mouse model that expresses high levels of Usp22 in all tissues. Phenotypic characterization of these mice revealed over-branching of the mammary glands in females. Transcriptomic analyses indicate the upregulation of key pathways involved in mammary gland branching in mammary epithelial cells derived from the Usp22-overexpressing mice, including estrogen receptor, ERK/MAPK, and TGFß signaling. However, Usp22 overexpression did not lead to increased tumorigenesis in any tissue. Our findings indicate that elevated levels of Usp22 are not sufficient to induce tumors, but it may enhance signaling abnormalities associated with oncogenesis.

19.
J Immunother Cancer ; 9(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33827905

RESUMEN

BACKGROUND: CD8+ tissue-resident memory T (TRM) cells, marked by CD103 (ITGAE) expression, are thought to actively suppress cancer progression, leading to the hypothesis that their presence in tumors may predict response to immunotherapy. METHODS: Here, we test this by combining high-dimensional single-cell modalities with bulk tumor transcriptomics from 1868 patients enrolled in lung and bladder cancer clinical trials of atezolizumab (anti-programmed cell death ligand 1 (PD-L1)). RESULTS: ITGAE was identified as the most significantly upregulated gene in inflamed tumors. Tumor CD103+ CD8+ TRM cells exhibited a complex phenotype defined by the expression of checkpoint regulators, cytotoxic proteins, and increased clonal expansion. CONCLUSIONS: Our analyses indeed demonstrate that the presence of CD103+ CD8+ TRM cells, quantified by tracking intratumoral CD103 expression, can predict treatment outcome, suggesting that patients who respond to PD-1/PD-L1 blockade are those who exhibit an ongoing antitumor T-cell response.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígenos CD/genética , Antígeno B7-H1/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Cadenas alfa de Integrinas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/efectos adversos , Antígeno B7-H1/inmunología , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Fenotipo , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Tiempo , Resultado del Tratamiento , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inmunología
20.
MAbs ; 12(1): 1722541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32041466

RESUMEN

Antibodies from B-cell clonal lineages share sequence and structural properties as well as epitope specificity. Clonally unrelated antibodies can similarly share sequence and specificity properties and are said to be convergent. Convergent antibody responses against several antigens have been described in humans and mice and include different classes of shared sequence features. In particular, some antigens and epitopes can induce convergent responses of clonally unrelated antibodies with restricted heavy (VH) and light (VL) chain variable region germline segment usage without similarity in the heavy chain third complementarity-determining region (CDR H3), a critical specificity determinant. Whether these V germline segment-restricted responses reflect a general epitope specificity restriction of antibodies with shared VH/VL pairing is not known. Here, we investigated this question by determining patterns of antigen binding competition between clonally unrelated antigen-specific rat antibodies from paired-chain deep sequencing datasets selected based solely on VH/VL pairing. We found that antibodies with shared VH/VL germline segment pairings but divergent CDR H3 sequences almost invariably have restricted epitope specificity indicated by shared binding competition patterns. This epitope restriction included 82 of 85 clonally unrelated antibodies with 13 different VH/VL pairings binding in 8 epitope groups in 2 antigens. The corollary that antibodies with shared VH/VL pairing and epitope-restricted binding can accommodate widely divergent CDR H3 sequences was confirmed by in vitro selection of variants of anti-human epidermal growth factor receptor 2 antibodies known to mediate critical antigen interactions through CDR H3. Our results show that restricted epitope specificity determined by VH/VL germline segment pairing is a general property of rodent antigen-specific antibodies.


Asunto(s)
Especificidad de Anticuerpos/inmunología , Epítopos/inmunología , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/inmunología , Secuencia de Aminoácidos , Animales , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/inmunología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA