Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 33(9): 5289-5296, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36300622

RESUMEN

Fractal dimension (FD) is used to quantify brain structural complexity and is more sensitive to morphological variability than other cortical measures. However, the effects of normal aging and sex on FD are not fully understood. In this study, age- and sex-related differences in FD were investigated in a sample of 448 adults age of 19-80 years from a Chinese dataset. The FD was estimated with the surface-based morphometry (SBM) approach, sex differences were analyzed on a vertex level, and correlations between FD and age were examined. Generalized additive models (GAMs) were used to characterize the trajectories of age-related changes in 68 regions based on the Desikan-Killiany atlas. The SBM results showed sex differences in the entire sample and 3 subgroups defined by age. GAM results demonstrated that the FD values of 51 regions were significantly correlated with age. The trajectories of changes can be classified into 4 main patterns. Our results indicate that sex differences in FD are evident across developmental stages. Age-related trajectories in FD are not homogeneous across the cerebral cortex. Our results extend previous findings and provide a foundation for future investigation of the underlying mechanism.


Asunto(s)
Longevidad , Imagen por Resonancia Magnética , Adulto , Humanos , Masculino , Femenino , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Imagen por Resonancia Magnética/métodos , Fractales , Pueblos del Este de Asia , Envejecimiento , Corteza Cerebral
2.
Photochem Photobiol Sci ; 22(4): 809-824, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36527588

RESUMEN

The blue-light hazard (BLH) has raised concerns with the increasing applications of white light-emitting diodes (LEDs). Many researchers believed that the shorter wavelength or more light components generally resulted in more severe retinal damage. In this study, based on the conventional phosphor-coated white LED, we added azure (484 nm), cyan (511 nm), and red (664 nm) light to fabricate the low-hazard light source. The low-hazard light sources and conventional white LED illuminated 68 Sprague-Dawley (SD) rats for 7 days. Before and after light exposure, we measured the retinal function, thickness of retinal layers, and fundus photographs. The expression levels of autophagy-related proteins and the activities of oxidation-related biochemical indicators were also measured to investigate the mechanisms of damaging or protecting the retina. With the same correlated color temperature (CCT), the low-hazard light source results in significantly less damage on the retinal function and photoreceptors, even if it has two times illuminance and blue-light hazard-weighted irradiance ([Formula: see text]) than conventional white LED. The results illustrated that [Formula: see text] proposed by IEC 62471 could not exactly evaluate the light damage on rats' retinas. We also figured out that more light components could result in less light damage, which provided evidence for the photobiomodulation (PBM) and spectral opponency on light damage.


Asunto(s)
Luz , Retina , Ratas , Animales , Ratas Sprague-Dawley
3.
Mol Ecol ; 31(13): 3598-3612, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35560847

RESUMEN

While adaptation is commonly thought to result from selection on DNA sequence-based variation, recent studies have highlighted an analogous epigenetic component as well. However, the relative roles of these mechanisms in facilitating population persistence under environmental heterogeneity remain unclear. To address the underlying genetic and epigenetic mechanisms and their relationship during environmental adaptation, we screened the genomes and epigenomes of nine global populations of a predominately sessile marine invasive tunicate, Botryllus schlosseri. We detected clear population differentiation at the genetic and epigenetic levels. Patterns of genetic and epigenetic structure were significantly influenced by local environmental variables. Among these variables, minimum annual sea surface temperature was identified as the top explanatory variable for both genetic and epigenetic variation. However, patterns of population structure driven by genetic and epigenetic variation were somewhat distinct, suggesting possible autonomy of epigenetic variation. We found both shared and specific genes and biological pathways among genetic and epigenetic loci associated with environmental factors, consistent with complementary and independent contributions of genetic and epigenetic variation to environmental adaptation in this system. Collectively, these mechanisms may facilitate population persistence under environmental change and sustain successful invasions across novel environments.


Asunto(s)
Epigenómica , Variación Genética , Adaptación Fisiológica/genética , Epigénesis Genética , Variación Genética/genética , Genética de Población , Genoma
4.
Ecol Appl ; : e2772, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316814

RESUMEN

Elucidating processes and mechanisms involved in rapid local adaptation to varied environments is a poorly understood but crucial component in management of invasive species. Recent studies have proposed that genetic and epigenetic variation could both contribute to ecological adaptation, yet it remains unclear on the interplay between these two components underpinning rapid adaptation in wild animal populations. To assess their respective contributions to local adaptation, we explored epigenomic and genomic responses to environmental heterogeneity in eight recently colonized ascidian (Ciona intestinalis) populations at a relatively fine geographical scale. Based on MethylRADseq data, we detected strong patterns of local environment-driven DNA methylation divergence among populations, significant epigenetic isolation by environment (IBE), and a large number of local environment-associated epigenetic loci. Meanwhile, multiple genetic analyses based on single nucleotide polymorphisms (SNPs) showed genomic footprints of divergent selection. In addition, for five genetically similar populations, we detected significant methylation divergence and local environment-driven methylation patterns, indicating the strong effects of local environments on epigenetic variation. From a functional perspective, a majority of functional genes, Gene Ontology (GO) terms, and biological pathways were largely specific to one of these two types of variation, suggesting partial independence between epigenetic and genetic adaptation. The methylation quantitative trait loci (mQTL) analysis showed that the genetic variation explained only 18.67% of methylation variation, further confirming the autonomous relationship between these two types of variation. Altogether, we highlight the complementary interplay of genetic and epigenetic variation involved in local adaptation, which may jointly promote populations' rapid adaptive capacity and successful invasions in different environments. The findings here provide valuable insights into interactions between invaders and local environments to allow invasive species to rapidly spread, thus contributing to better prediction of invasion success and development of management strategies.

5.
Opt Express ; 29(20): 31594-31606, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615250

RESUMEN

In this study, we propose a low-cost, simple and feasible post-processing approach to improve the light extraction efficiency (LEE) of LED packages. Amorphous photonic structures (APSs) with only short-range order are fabricated from anodic aluminum oxide (AAO) and transferred to intermediate polymer stamp (IPS) by nanoimprint technology. The IPS with APSs is directly mounted onto the surface of an LED package, where the LEE is achieved as 94.6%. The scanning electron microscope (SEM) images of AAO templates and imprinted IPS are analyzed by radial distribution function and diameter histogram. The far-field patterns of APS-mounted LED packages are measured in electroluminescence (EL). The three-dimensional finite-difference time-domain (3D-FDTD) calculations of transmittance of APSs confirm that they improve the light extraction above the critical angle. Two-dimensional Fourier power spectra from SEM images of APSs are also calculated. The LEE enhancement is attributed to that the APSs have short-range order on a length scale comparable to emission wavelength of LED. We provide novel multistage simulations in a simplified FDTD model for the LED package. Finally, we discuss the influence of the morphology of APSs on the LEE of the APS mounted LEDs.

6.
Opt Express ; 29(9): 13219-13230, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985061

RESUMEN

Micro-LEDs can work under an extremely high injection level and are widely used in high-brightness micro-displays and visible light communication. With the increase of carrier concentration, many-body effects gradually become important factors affecting devices' characteristics. Considering the effects of carrier scattering, bandgap renormalization, and Coulomb enhancement (CE), changes in the electroluminescence spectra of micro-LEDs are analyzed as the current density increases from 49.2 to 358.2 kA/cm2, the latter representing an ultra-high injection level. Affected by plasma screening, CE decreases below about 150 kA/cm2. After that, polarization screening dominates and effectively alleviates the spatial separation of electrons and holes, which results in CE increases to the maximum injection level of 358.2 kA/cm2. It is established that CE promotes radiative recombination processes. Different from the traditional phenomenon of "efficiency droop", the enhanced attraction between carriers leads to an abnormal increase of external quantum efficiency at high current density.

7.
Respir Res ; 22(1): 291, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34774051

RESUMEN

BACKGROUND: Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia-reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo. METHODS: CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by intraperitoneal injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with anoxia/reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs. RESULTS: CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by the activation of PPARγ; the anti-apoptotic effects might be mediated by the PI3K/AKT pathway. CONCLUSIONS: CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/genética , Citocromo P-450 CYP2J2/genética , Regulación de la Expresión Génica , Hipertensión Pulmonar/genética , ARN/genética , Daño por Reperfusión/genética , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animales , Células Cultivadas , Citocromo P-450 CYP2J2/biosíntesis , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Masculino , Ratas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
8.
FASEB J ; 34(3): 3805-3819, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31975555

RESUMEN

High-density lipoprotein (HDL), a well-known atheroprotective factor, can be converted to proatherogenic particles in chronic inflammation. HDL-targeted therapeutic strategy for atherosclerotic cardiovascular disease (CVD) is currently under development. This study aims to assess the role of methionine sulfoxide reductase A (MsrA) in abnormal HDL and its related disorders in scavenger receptor class B type I deficient (SR-BI-/- ) mice. First, we demonstrated that MsrA overexpression attenuated ROS level and inflammation in HepG2 cells. For the in vivo study, SR-BI-/- mice were intravenously injected with lentivirus to achieve hepatic MsrA overexpression. High-level hepatic MsrA significantly reduced the plasma free cholesterol contents, improved HDL functional proteins apolipoprotein A-I (apoAI), apoE, paraoxonase1 (PON1), and lecithin:cholesterol acyltransferase (LCAT), while decreased the pro-inflammatory property of dysfunctional HDL, contributing to reduced atherosclerosis and hepatic steatosis in Western diet-fed mice. Furthermore, the study revealed that hepatic MsrA altered the expression of several genes controlling HDL biogenesis, cholesterol esterification, cholesterol uptake mediated by low-density lipoprotein receptor (LDLR) and biliary excretion, as well as suppressed nuclear factor κB (NF-κB) signaling pathway, which largely relied on liver X receptor alpha (LXRα)-upregulation. These results provide original evidence that MsrA may be a promising target for the therapy of dysfunctional HDL-related CVD.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/terapia , Lipoproteínas HDL/sangre , Metionina Sulfóxido Reductasas/metabolismo , Receptores Depuradores de Clase B/metabolismo , Animales , Aterosclerosis/sangre , Aterosclerosis/genética , Western Blotting , Colesterol/sangre , Colesterol/metabolismo , Femenino , Células Hep G2 , Humanos , Inmunohistoquímica , Lentivirus/genética , Macrófagos/metabolismo , Masculino , Metionina Sulfóxido Reductasas/genética , Ratones , Ratones Endogámicos C57BL , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Depuradores de Clase B/deficiencia , Receptores Depuradores de Clase B/genética
9.
Sensors (Basel) ; 21(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34577332

RESUMEN

Enterprise systems typically produce a large number of logs to record runtime states and important events. Log anomaly detection is efficient for business management and system maintenance. Most existing log-based anomaly detection methods use log parser to get log event indexes or event templates and then utilize machine learning methods to detect anomalies. However, these methods cannot handle unknown log types and do not take advantage of the log semantic information. In this article, we propose ConAnomaly, a log-based anomaly detection model composed of a log sequence encoder (log2vec) and multi-layer Long Short Term Memory Network (LSTM). We designed log2vec based on the Word2vec model, which first vectorized the words in the log content, then deleted the invalid words through part of speech tagging, and finally obtained the sequence vector by the weighted average method. In this way, ConAnomaly not only captures semantic information in the log but also leverages log sequential relationships. We evaluate our proposed approach on two log datasets. Our experimental results show that ConAnomaly has good stability and can deal with unseen log types to a certain extent, and it provides better performance than most log-based anomaly detection methods.


Asunto(s)
Aprendizaje Automático , Memoria a Largo Plazo , Semántica , Habla
10.
Biochem Biophys Res Commun ; 510(1): 91-96, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30661790

RESUMEN

Adhesive ascidians have caused serious biofouling problems and huge economic losses in marine ecosystems. However, adhesion mechanisms, particularly on functional proteins involved in ascidian adhesion, remain largely unexplored. Here, we identified 26 representative stolon proteins from the highly invasive fouling ascidian Ciona robusta using the proteomics approach. The uncharacterized stolon proteins were rich in adhesion-related conserved domains. Real-time quantitative PCR further revealed specific expressions of these uncharacterized protein genes in stolon tissue, suggesting their potential roles in stolon adhesion.> A recombinant vWFA domain-containing uncharacterized protein, ascidian stolon protein 1 (ASP-1), was successfully expressed in a baculovirus-insect cell system and purified in vitro. Coating experiment showed that tyrosinase-modified ASP-1 could absorb to glass and organic glass stronger than unmodified ASP-1, while only modified ASP-1 could absorb to aluminum foil. Quartz crystal microbalance analysis also showed the increase in absorption ability of ASP-1 after modification. In addition, abundant 3,4-l-dihydroxyphenylalanine (DOPA) in modified protein was detected by nitroblue tetrazolium staining. These results suggest that ASP-1 be involved in ascidian DOPA-dependent and material-selective adhesion. Overall, this study provides insight into molecular mechanisms of C. robusta stolon adhesion, and findings here are expected to be conductive to develop strategies against biofouling caused by ascidians.


Asunto(s)
Incrustaciones Biológicas , Adhesión Celular , Ciona intestinalis/química , Especies Introducidas , Proteínas/análisis , Adhesivos/química , Adsorción , Animales , Monofenol Monooxigenasa/metabolismo , Proteómica/métodos , Urocordados/química
11.
BMC Evol Biol ; 18(1): 187, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30526493

RESUMEN

BACKGROUND: Adaptive evolution is one of the crucial mechanisms for organisms to survive and thrive in new environments. Recent studies suggest that adaptive evolution could rapidly occur in species to respond to novel environments or environmental challenges during range expansion. However, for environmental adaptation, many studies successfully detected phenotypic features associated with local environments, but did not provide ample genetic evidence on microevolutionary dynamics. It is therefore crucial to thoroughly investigate the genetic basis of rapid microevolution in response to environmental changes, in particular on what genes and associated variation are responsible for environmental challenges. Here, we genotyped genome-wide gene-associated microsatellites to detect genetic signatures of rapid microevolution of a marine tunicate invader, Ciona robusta, during recent range expansion to the harsh environment in the Red Sea. RESULTS: The Red Sea population was significantly differentiated from the other global populations. The genome-wide scan, as well as multiple analytical methods, successfully identified a set of adaptive genes. Interestingly, the allele frequency largely varied at several adaptive loci in the Red Sea population, and we found significant correlations between allele frequency and local environmental factors at these adaptive loci. Furthermore, a set of genes were annotated to get involved in local temperature and salinity adaptation, and the identified adaptive genes may largely contribute to the invasion success to harsh environments. CONCLUSIONS: All the evidence obtained in this study clearly showed that environment-driven selection had left detectable signatures in the genome of Ciona robusta within a few generations. Such a rapid microevolutionary process is largely responsible for the harsh environmental adaptation and therefore contributes to invasion success in different aquatic ecosystems with largely varied environmental factors.


Asunto(s)
Evolución Biológica , Ciona intestinalis/genética , Ecosistema , Adaptación Fisiológica/genética , Animales , Teorema de Bayes , Ciona intestinalis/fisiología , Frecuencia de los Genes/genética , Ontología de Genes , Sitios Genéticos , Variación Genética , Genética de Población , Genoma , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , Selección Genética
12.
Opt Express ; 26(5): 5265-5274, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529731

RESUMEN

GaN/InGaN multi-quantum-wells (MQWs) micron light emitting diodes (µLEDs) with the size ranging from 10 to 300 µm are fabricated. Effects of strain relaxation on the performance of µLEDs have been investigated both experimentally and numerically. Kelvin probe force microscopy (KPFM) and micro-photoluminescence (µPL) are used to characterize the strained area on micron pillars. Strain relaxation and reducing polarization field in MQWs almost affects the whole mesa for 10 µm LEDs and about 4% area around the lateral for 300 µm LEDs. It makes a great contribution to high performance for smaller size µLEDs. Moreover, an indirect nanoscale strain measurement for µLEDs are provided.

13.
Glob Chang Biol ; 24(6): 2708-2720, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29330969

RESUMEN

Invasions of freshwater habitats by marine and brackish species have become more frequent in recent years with many of those species originating from the Ponto-Caspian region. Populations of Ponto-Caspian species have successfully established in the North and Baltic Seas and their adjoining rivers, as well as in the Great Lakes-St. Lawrence River region. To determine if Ponto-Caspian taxa more readily acclimatize to and colonize diverse salinity habitats than taxa from other regions, we conducted laboratory experiments on 22 populations of eight gammarid species native to the Ponto-Caspian, Northern European and Great Lakes-St. Lawrence River regions. In addition, we conducted a literature search to survey salinity ranges of these species worldwide. Finally, to explore evolutionary relationships among examined species and their populations, we sequenced the mitochondrial cytochrome c oxidase subunit I gene (COI) from individuals used for our experiments. Our study revealed that all tested populations tolerate wide ranges of salinity, however, different patterns arose among species from different regions. Ponto-Caspian taxa showed lower mortality in fresh water, while Northern European taxa showed lower mortality in fully marine conditions. Genetic analyses showed evolutionary divergence among species from different regions. Due to the geological history of the two regions, as well as high tolerance of Ponto-Caspian species to fresh water, whereas Northern European species are more tolerant of fully marine conditions, we suggest that species originating from the Ponto-Caspian and Northern European regions may be adapted to freshwater and marine environments, respectively. Consequently, the perception that Ponto-Caspian species are more successful colonizers might be biased by the fact that areas with highest introduction frequency of NIS (i.e., shipping ports) are environmentally variable habitats which often include freshwater conditions that cannot be tolerated by euryhaline taxa of marine origin.


Asunto(s)
Anfípodos/fisiología , Evolución Biológica , Especies Introducidas , Tolerancia a la Sal , Animales , Proteínas de Artrópodos/genética , Canadá , Complejo IV de Transporte de Electrones/genética , Europa (Continente) , Evolución Molecular , Proteínas Mitocondriales/genética , Estados Unidos
14.
Int J Mol Sci ; 19(3)2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29495387

RESUMEN

Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.


Asunto(s)
Luz , Fotosíntesis , Fenómenos Fisiológicos de las Plantas , Cloroplastos/metabolismo , Metabolismo Energético , Metabolismo Secundario
15.
Molecules ; 23(4)2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29596355

RESUMEN

Tea (Camellia sinensis) is an important crop, and its leaves are used to make the most widely consumed beverage, aside from water. People have been using leaves from tea plants to make teas for a long time. However, less attention has been paid to the flowers of tea plants, which is a waste of an abundant resource. In the past 15 years, researchers have attempted to discover, identify, and evaluate functional molecules from tea flowers, and have made insightful and useful discoveries. Here, we summarize the recent investigations into these functional molecules in tea flowers, including functional molecules similar to those in tea leaves, as well as the preponderant functional molecules in tea flowers. Tea flowers contain representative metabolites similar to those of tea leaves, such as catechins, flavonols, caffeine, and amino acids. The preponderant functional molecules in tea flowers include saponins, polysaccharides, aromatic compounds, spermidine derivatives, and functional proteins. We also review the safety and biological functions of tea flowers. Tea flower extracts are proposed to be of no toxicological concern based on evidence from the evaluation of mutagenicity, and acute and subchronic toxicity in rats. The presence of many functional metabolites in tea flowers indicates that tea flowers possess diverse biological functions, which are mostly related to catechins, polysaccharides, and saponins. Finally, we discuss the potential for, and challenges facing, future applications of tea flowers as a second resource from tea plants.


Asunto(s)
Cafeína/química , Camellia sinensis/química , Catequina/química , Flavonoles/química , Flores/química , Extractos Vegetales/química , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Cafeína/metabolismo , Camellia sinensis/metabolismo , Catequina/metabolismo , Flavonoles/metabolismo , Flores/metabolismo , Humanos
16.
Mol Ecol ; 26(16): 4351-4360, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28599072

RESUMEN

The release of anthropogenic pollution into freshwater ecosystems has largely transformed biodiversity and its geographical distribution patterns globally. However, for many communities including ecologically crucial ones such as zooplankton, it is largely unknown how different communities respond to environmental pollution. Collectively, dispersal and species sorting are two competing processes in determining the structure and geographical distribution of zooplankton communities in running water ecosystems such as rivers. At fine geographical scales, dispersal is usually considered as the dominant factor; however, the relative role of species sorting has not been evaluated well, mainly because significant environmental gradients rarely exist along continuously flowing rivers. The Chaobai River in northern China represents a rare system, where a significant environmental gradient exists at fine scales. Here, we employed high-throughput sequencing to characterize complex zooplankton communities collected from the Chaobai River, and tested the relative roles of dispersal and species sorting in determining zooplankton community structure along the pollution gradient. Our results showed distinct patterns of zooplankton communities along the environmental gradient, and chemical pollutant-related factors such as total phosphorus and chlorophyll-a were identified as the major drivers for the observed patterns. Further partial redundancy analyses showed that species sorting overrode the effect of dispersal to shape local zooplankton community structure. Thus, our results reject the dispersal hypothesis and support the concept that species sorting caused by local pollution can largely determine the zooplankton community structure when significant environmental gradients exist at fine geographical scales in highly polluted running water ecosystems.


Asunto(s)
Distribución Animal , Ríos , Contaminación del Agua , Zooplancton/clasificación , Animales , China , Ecosistema , Geografía
17.
Molecules ; 22(10)2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28991204

RESUMEN

Plant growth retardant (PGR) refers to organics that can inhibit the cell division of plant stem tip sub-apical meristem cells or primordial meristem cell. They are widely used in the cultivation of rhizomatous functional plants; such as Codonopsis Radix, that is a famous Chinese traditional herb. However, it is still unclear whether PGR affects the medicinal quality of C. Radix. In the present study, amino acid analyses, targeted and non-targeted analyses by ultra-performance liquid chromatography combined with time-of-flight mass spectrometry (UPLC-TOF-MS) and gas chromatography-MS were used to analyze and compare the composition of untreated C. Radix and C. Radix treated with PGR. The contents of two key bioactive compounds, lobetyolin and atractylenolide III, were not affected by PGR treatment. The amounts of polysaccharides and some internal volatiles were significantly decreased by PGR treatment; while the free amino acids content was generally increased. Fifteen metabolites whose abundance were affected by PGR treatment were identified by UPLC-TOF-MS. Five of the up-regulated compounds have been reported to show immune activity, which might contribute to the healing efficacy ("buqi") of C. Radix. The results of this study showed that treatment of C. Radix with PGR during cultivation has economic benefits and affected some main bioactive compounds in C. Radix.


Asunto(s)
Codonopsis/efectos de los fármacos , Medicamentos Herbarios Chinos/análisis , Reguladores del Crecimiento de las Plantas/farmacología , Aminoácidos/análisis , Cromatografía Líquida de Alta Presión , Codonopsis/química , Codonopsis/metabolismo , Espectrometría de Masas , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Polisacáridos/análisis , Compuestos Orgánicos Volátiles/análisis
18.
J Org Chem ; 81(24): 12553-12558, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27978759

RESUMEN

The first 6π-photocyclization of dienynes was developed, which provides a new and effective protocol for the synthesis of the phenyl ring in excellent yields with nice functional group tolerance. In this transformation, the Cu(OTf)2 catalyst plays a key role in the conversion of alkyne moiety into an alkene-type moiety, which means that the dienyne reactant is converted into a triene-type substrate. Thus, this reaction proceeds via a Cu(II)-catalyzed 6π-photocyclization of triene-type derivatives.

19.
J Epidemiol ; 26(10): 538-545, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27064131

RESUMEN

BACKGROUND: Epidemiology studies have shown a consistently increased risk of acute myocardial infarction (AMI) correlated with particulate matter (PM) exposure. However, little is known about the association with specific AMI subtypes. In this work, we investigated the association between short-term PM exposure and emergency department visits (EDVs) for AMI, ST-elevation myocardial infarction (STEMI), and non-ST-elevation myocardial infarction (NSTEMI). METHODS: We based this case-crossover study on 2749 patients from Chaoyang District hospitalized with AMI in Anzhen Hospital during 2014. Meteorological and air pollution data were collected during this period. We used a time-stratified case-crossover design with lag model, adjusted for meteorological conditions and/or other gaseous pollutants, to estimate risk of EDVs for AMI, STEMI, and NSTEMI. We conducted stratified analyses by gender, age, season, and comorbid conditions to examine potential effect modification. RESULTS: We found that each 10 µg/m3 increment of PM2.5 concentration (1-day lagged) was associated with an increased risk of EDVs for STEMI (OR 1.05; 95% CI, 1.00-1.11). We found no association of PM2.5 concentration with overall AMI or NSTEMI. No effect modification was found when stratified by gender, season, or comorbid conditions, even though the effect size was larger in patients who were male, smokers, and comorbid with hypertension. Patients aged ≥65 years showed a significantly increased risk of STEMI associated with PM2.5 in the previous day than those aged <65 years. CONCLUSIONS: Our study indicated a transient effect of short-term PM2.5 exposure on EDVs for STEMI. Patients aged ≥65 years appeared to be particularly susceptible. Our findings suggest that studies of the association between PM exposure and AMI should consider AMI subtypes, lag times, and individual characteristics.


Asunto(s)
Servicio de Urgencia en Hospital/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Infarto del Miocardio/terapia , Material Particulado/efectos adversos , Anciano , China/epidemiología , Estudios Cruzados , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/epidemiología , Material Particulado/análisis , Riesgo , Factores de Tiempo
20.
Molecules ; 21(9)2016 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-27563859

RESUMEN

1-Phenylethanol (1PE) is a major aromatic volatile in tea (Camellia sinensis) flowers, whereas it occurs in a much smaller amounts in leaves. Enzymes involved in the formation of 1PE in plants and the reason why 1PE differentially accumulates in plants is unknown. In the present study, enzymes in the last step leading from acetophenone to 1PE were isolated from tea flowers by traditional biochemical chromatography. The two types of partially purified enzymes were proposed to be responsible for formations of (R)-1PE and (S)-1PE, respectively. Tea leaves also contained such enzymes having equivalent activities with flowers. Stable isotope labeling experiments indicated that weak transformation from l-phenylalanine to acetophenone in leaves mainly resulted in little occurrence of 1PE in leaves. This study provided an example that differential distribution of some metabolites in plant tissues was not only determined by enzyme(s) in the last step of metabolite formation, but also can be due to substrate availability.


Asunto(s)
Alcoholes Bencílicos/metabolismo , Camellia sinensis/metabolismo , Flores/metabolismo , Hojas de la Planta/metabolismo , Acetofenonas/metabolismo , Fenilalanina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA