Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 130(1): 199-209, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12226500

RESUMEN

We used an anti-indole acetic acid (IAA or auxin) monoclonal antibody-based immunocytochemical procedure to monitor IAA level in Arabidopsis tissues. Using immunocytochemistry and the IAA-driven beta-glucuronidase (GUS) activity of Aux/IAA promoter::GUS constructs to detect IAA distribution, we investigated the role of polar auxin transport in vascular differentiation during leaf development in Arabidopsis. We found that shoot apical cells contain high levels of IAA and that IAA decreases as leaf primordia expand. However, seedlings grown in the presence of IAA transport inhibitors showed very low IAA signal in the shoot apical meristem (SAM) and the youngest pair of leaf primordia. Older leaf primordia accumulate IAA in the leaf tip in the presence or absence of IAA transport inhibition. We propose that the IAA in the SAM and the youngest pair of leaf primordia is transported from outside sources, perhaps the cotyledons, which accumulate more IAA in the presence than in the absence of transport inhibition. The temporal and spatial pattern of IAA localization in the shoot apex indicates a change in IAA source during leaf ontogeny that would influence flow direction and, consequently, the direction of vascular differentiation. The IAA production and transport pattern suggested by our results could explain the venation pattern, and the vascular hypertrophy caused by IAA transport inhibition. An outside IAA source for the SAM supports the notion that IAA transport and procambium differentiation dictate phyllotaxy and organogenesis.


Asunto(s)
Arabidopsis/metabolismo , Diferenciación Celular/fisiología , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/citología , Arabidopsis/genética , Transporte Biológico/fisiología , Fluorenos/farmacología , Glucuronidasa/genética , Glucuronidasa/metabolismo , Inmunohistoquímica , Ácidos Indolacéticos/farmacología , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Ftalimidas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Ácidos Triyodobenzoicos/farmacología
2.
Development ; 131(21): 5341-51, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15486337

RESUMEN

Plant steroid hormones, brassinosteroids (BRs), are perceived by the plasma membrane-localized leucine-rich-repeat-receptor kinase BRI1. Based on sequence similarity, we have identified three members of the BRI1 family, named BRL1, BRL2 and BRL3. BRL1 and BRL3, but not BRL2, encode functional BR receptors that bind brassinolide, the most active BR, with high affinity. In agreement, only BRL1 and BRL3 can rescue bri1 mutants when expressed under the control of the BRI1 promoter. While BRI1 is ubiquitously expressed in growing cells, the expression of BRL1 and BRL3 is restricted to non-overlapping subsets of vascular cells. Loss-of-function of brl1 causes abnormal phloem:xylem differentiation ratios and enhances the vascular defects of a weak bri1 mutant. bri1 brl1 brl3 triple mutants enhance bri1 dwarfism and also exhibit abnormal vascular differentiation. Thus, Arabidopsis contains a small number of BR receptors that have specific functions in cell growth and vascular differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Diferenciación Celular , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/citología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Brasinoesteroides , Colestanoles/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Filogenia , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Alineación de Secuencia , Homología de Secuencia , Esteroides Heterocíclicos/metabolismo
3.
Plant Physiol ; 134(3): 995-1005, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14963244

RESUMEN

A seed marks the transition between two developmental states; a plant is an embryo during seed formation, whereas it is a seedling after emergence from the seed. Two factors have been identified in Arabidopsis that play a role in establishment of repression of the embryonic state: PKL (PICKLE), which codes for a putative CHD3 chromatin remodeling factor, and gibberellin (GA), a plant growth regulator. Previous observations have also suggested that PKL mediates some aspects of GA responsiveness in the adult plant. To investigate possible mechanisms by which PKL and GA might act to repress the embryonic state, we further characterized the ability of PKL and GA to repress embryonic traits and reexamined the role of PKL in mediating GA-dependent responses. We found that PKL acts throughout the seedling to repress expression of embryonic traits. Although the ability of pkl seedlings to express embryonic traits is strongly induced by inhibiting GA biosynthesis, it is only marginally responsive to abscisic acid and SPY (SPINDLY), factors that have previously been demonstrated to inhibit GA-dependent responses during germination. We also observed that pkl plants exhibit the phenotypic hallmarks of a mutation in a positive regulator of a GA response pathway including reduced GA responsiveness and increased synthesis of bioactive GAs. These observations indicate that PKL may mediate a subset of GA-dependent responses during shoot development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/embriología , Arabidopsis/genética , Genes de Plantas , Arabidopsis/efectos de los fármacos , Secuencia de Bases , ADN Helicasas , ADN de Plantas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas/biosíntesis , Giberelinas/farmacología , Fenotipo , Plantas Modificadas Genéticamente , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA