Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 588(7837): 337-343, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33239788

RESUMEN

The zebrafish (Danio rerio) has been widely used in the study of human disease and development, and about 70% of the protein-coding genes are conserved between the two species1. However, studies in zebrafish remain constrained by the sparse annotation of functional control elements in the zebrafish genome. Here we performed RNA sequencing, assay for transposase-accessible chromatin using sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing, whole-genome bisulfite sequencing, and chromosome conformation capture (Hi-C) experiments in up to eleven adult and two embryonic tissues to generate a comprehensive map of transcriptomes, cis-regulatory elements, heterochromatin, methylomes and 3D genome organization in the zebrafish Tübingen reference strain. A comparison of zebrafish, human and mouse regulatory elements enabled the identification of both evolutionarily conserved and species-specific regulatory sequences and networks. We observed enrichment of evolutionary breakpoints at topologically associating domain boundaries, which were correlated with strong histone H3 lysine 4 trimethylation (H3K4me3) and CCCTC-binding factor (CTCF) signals. We performed single-cell ATAC-seq in zebrafish brain, which delineated 25 different clusters of cell types. By combining long-read DNA sequencing and Hi-C, we assembled the sex-determining chromosome 4 de novo. Overall, our work provides an additional epigenomic anchor for the functional annotation of vertebrate genomes and the study of evolutionarily conserved elements of 3D genome organization.


Asunto(s)
Genoma/genética , Imagenología Tridimensional , Imagen Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Pez Cebra/genética , Animales , Encéfalo/metabolismo , Secuencia Conservada/genética , Metilación de ADN , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Masculino , Ratones , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Análisis de la Célula Individual , Especificidad de la Especie
2.
Subcell Biochem ; 103: 95-120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37120466

RESUMEN

Musculoskeletal ageing is a major health challenge as muscles and bones constitute around 55-60% of body weight. Ageing muscles will result in sarcopenia that is characterized by progressive and generalized loss of skeletal muscle mass and strength with a risk of adverse outcomes. In recent years, a few consensus panels provide new definitions for sarcopenia. It was officially recognized as a disease in 2016 with an ICD-10-CM disease code, M62.84, in the International Classification of Diseases (ICD). With the new definitions, there are many studies emerging to investigate the pathogenesis of sarcopenia, exploring new interventions to treat sarcopenia and evaluating the efficacy of combination treatments for sarcopenia. The scope of this chapter is to summarize and appraise the evidence in terms of (1) clinical signs, symptoms, screening, and diagnosis, (2) pathogenesis of sarcopenia with emphasis on mitochondrial dysfunction, intramuscular fat infiltration and neuromuscular junction deterioration, and (3) current treatments with regard to physical exercises and nutritional supplement.


Asunto(s)
Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/terapia , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Envejecimiento/fisiología , Ejercicio Físico
3.
J Neurosci ; 42(25): 5021-5033, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35606144

RESUMEN

Oxytocin (Oxt) neurons regulate diverse physiological responses via direct connections with different neural circuits. However, the lack of comprehensive input-output wiring diagrams of Oxt neurons and their quantitative relationship with Oxt receptor (Oxtr) expression presents challenges to understanding circuit-specific Oxt functions. Here, we establish a whole-brain distribution and anatomic connectivity map of Oxt neurons, and their relationship with Oxtr expression using high-resolution 3D mapping methods in adult male and female mice. We use a flatmap to describe Oxt neuronal expression in four hypothalamic domains including under-characterized Oxt neurons in the tuberal nucleus (TU). Oxt neurons in the paraventricular hypothalamus (PVH) broadly project to nine functional circuits that control cognition, brain state, and somatic visceral response. In contrast, Oxt neurons in the supraoptic (SO) and accessory (AN) nuclei have limited central projection to a small subset of the nine circuits. Surprisingly, quantitative comparison between Oxt output and Oxtr expression showed no significant correlation across the whole brain, suggesting abundant indirect Oxt signaling in Oxtr-expressing areas. Unlike output, Oxt neurons in both the PVH and SO receive similar monosynaptic inputs from a subset of the nine circuits mainly in the thalamic, hypothalamic, and cerebral nuclei areas. Our results suggest that PVH-Oxt neurons serve as a central modulator to integrate external and internal information via largely reciprocal connection with the nine circuits while the SO-Oxt neurons act mainly as unidirectional Oxt hormonal output. In summary, our Oxt wiring diagram provides anatomic insights about distinct behavioral functions of Oxt signaling in the brain.SIGNIFICANCE STATEMENT Oxytocin (Oxt) neurons regulate diverse physiological functions from prosocial behavior to pain sensation via central projection in the brain. Thus, understanding detailed anatomic connectivity of Oxt neurons can provide insight on circuit-specific roles of Oxt signaling in regulating different physiological functions. Here, we use high-resolution mapping methods to describe the 3D distribution, monosynaptic input and long-range output of Oxt neurons, and their relationship with Oxt receptor (Oxtr) expression across the entire mouse brain. We found Oxt connections with nine functional circuits controlling cognition, brain state, and somatic visceral response. Furthermore, we identified a quantitatively unmatched Oxt-Oxtr relationship, suggesting broad indirect Oxt signaling. Together, our comprehensive Oxt wiring diagram advances our understanding of circuit-specific roles of Oxt neurons.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Animales , Encéfalo/metabolismo , Femenino , Masculino , Ratones , Neuronas/metabolismo , Oxitocina/metabolismo , Receptores de Oxitocina/metabolismo , Transducción de Señal
4.
J Synchrotron Radiat ; 29(Pt 2): 505-514, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254315

RESUMEN

Ideal three-dimensional imaging of complex samples made up of micron-scale structures extending over mm to cm, such as biological tissues, requires both wide field of view and high resolution. For existing optics and detectors used for micro-CT (computed tomography) imaging, sub-micron pixel resolution can only be achieved for fields of view of <2 mm. This article presents a unique detector system with a 6 mm field-of-view image circle and 0.5 µm pixel size that can be used in micro-CT units utilizing both synchrotron and commercial X-ray sources. A resolution-test pattern with linear microstructures and whole adult Daphnia magna were imaged at beamline 8.3.2 of the Berkeley Advanced Light Source. Volumes of 10000 × 10000 × 7096 isotropic 0.5 µm voxels were reconstructed over a 5.0 mm × 3.5 mm field of view. Measurements in the projection domain confirmed a 0.90 µm measured spatial resolution that is largely Nyquist-limited. This unprecedented combination of field of view and resolution dramatically reduces the need for sectional scans and computational stitching for large samples, ultimately offering the means to elucidate changes in tissue and cellular morphology in the context of larger, whole, intact model organisms and specimens. This system is also anticipated to benefit micro-CT imaging in materials science, microelectronics, agricultural science and biomedical engineering.


Asunto(s)
Imagenología Tridimensional , Sincrotrones , Imagenología Tridimensional/métodos , Microtomografía por Rayos X/métodos , Rayos X
5.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34445423

RESUMEN

Low-magnitude high-frequency vibration (LMHFV) has previously been reported to modulate the acute inflammatory response of ovariectomy-induced osteoporotic fracture healing. However, the underlying mechanisms are not clear. In the present study, we investigated the effect of LMHFV on the inflammatory response and the role of the p38 MAPK mechanical signaling pathway in macrophages during the healing process. A closed femoral fracture SD rat model was used. In vivo results showed that LMHFV enhanced activation of the p38 MAPK pathway at the fracture site. The acute inflammatory response, expression of inflammatory cytokines, and callus formation were suppressed in vivo by p38 MAPK inhibition. However, LMHFV did not show direct in vitro enhancement effects on the polarization of RAW264.7 macrophage from the M1 to M2 phenotype, but instead promoted macrophage enlargement and transformation to dendritic monocytes. The present study demonstrated that p38 MAPK modulated the enhancement effects of mechanical stimulation in vivo only. LMHFV may not have exerted its enhancement effects directly on macrophage, but the exact mechanism may have taken a different pathway that requires further investigation in the various subsets of immune cells.


Asunto(s)
Citocinas/sangre , Curación de Fractura , Fracturas Osteoporóticas/terapia , Vibración/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Fracturas Osteoporóticas/sangre , Fracturas Osteoporóticas/inmunología , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Microtomografía por Rayos X
6.
Chin Clin Oncol ; 13(Suppl 1): AB057, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295375

RESUMEN

BACKGROUND: Skull base metastasis from follicular thyroid carcinoma (FTC) is uncommon. A single study, encompassing 473 cases of thyroid carcinoma, revealed a mere 2.5% incidence of such metastasis. Much is unknown about FTC skull base metastasis, and a streamlined algorithm is yet to be created. METHODS: We present a case of a 63-year-old female, with a history of a non-toxic goiter, complaining of a chronic history of progressive L proptosis, associated with headache and vision loss. History and radiologic findings were incompatible, hence, a biopsy was performed, revealing FTC metastasis. With this experience, we performed a systematic review of available literature for FTC skull base metastasis to help guide management for future cases. Using PRISMA guidelines, a systematic search across PubMed, Google Scholar, and Cochrane Library using MeSH keywords "Skull base", "Metastasis", and "Follicular Thyroid Carcinoma", identified 18 records. Fifteen articles were assessed for eligibility, but only eight studies met the inclusion criteria for qualitative analysis, including demographics, pathological characteristics, surgical approaches, clinical outcomes, and follow-up data. RESULTS: Included studies showcased a consistent age range (43 to 69 years) among patients diagnosed with FTC, with variability in management for the primary malignancy. Metastatic presentation varied depending on tumor location, with symptoms including dysphagia, proptosis, epistaxis, facial dysesthesia, and visual impairment. Tumor size ranged from 3 cm × 3 cm × 2 cm to 6.8 cm × 3.9 cm × 5.3 cm, greatly influencing surgical management strategies, from punch biopsy to complete resection and reconstruction. Adjuvant therapies included combinations of intensity-modulated radiation therapy (IMRT) with immunotherapy, I-131 therapy, oral radioiodine ablation, and radiotherapy alone, with outcomes showing improvement in most cases. Follow-up duration varied from 12 to 60 months, reflecting a wide range of outcome results. CONCLUSIONS: FTC skull base metastasis remains to be an uncommon entity in neurosurgery. Its rarity creates a lack of established guidelines and treatment algorithms. A high index of suspicion as well as good history and physical examination skills are necessary to achieve an adequate diagnosis. Multi-disciplinary teams form the cornerstone of a patient-tailored approach to its management.


Asunto(s)
Adenocarcinoma Folicular , Exoftalmia , Neoplasias de la Tiroides , Humanos , Femenino , Persona de Mediana Edad , Adenocarcinoma Folicular/complicaciones , Neoplasias de la Tiroides/complicaciones , Neoplasias de la Tiroides/patología , Exoftalmia/etiología , Neoplasias de la Base del Cráneo/complicaciones
7.
J Pers Med ; 14(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39338189

RESUMEN

Osteosarcopenia is a prevalent geriatric disease with a significantly increased risk of adverse outcomes than osteoporosis or sarcopenia alone. Identification of older adults with osteosarcopenia using High-Resolution Peripheral Quantitative Computed Tomography (HR-pQCT) could allow better clinical decision making. This study aimed to explore the feasibility of HR-pQCT to differentiate osteoporosis, sarcopenia, and osteosarcopenia in older adults, with a primary outcome to derive a model to distinguish older adults with osteosarcopenia from those with low bone mineral density only, and to examine important HR-pQCT parameters associated with osteosarcopenia. This was a cross-sectional study involving 628 community-dwelling Chinese adults aged ≥ 40. Subjects were assessed by dual energy X-ray absorptiometry (DXA) for osteopenia/osteoporosis and sarcopenia using the Asian Working Group for Sarcopenia definition; then grouped into healthy, osteopenia/osteoporosis, sarcopenia, and osteosarcopenia groups. A series of regression analyses and other statistical tests were performed to derive the model. HR-pQCT showed the ability to discriminate older adults with osteosarcopenia from those with osteopenia/osteoporosis only. Cross-validation of our derived model correctly classified 77.0% of the cases with good diagnostic power and showed a sensitivity of 76.0% and specificity of 77.6% (Youden index = 0.54; AUC = 0.79, p < 0.001). Analysis showed trabecular volumetric bone density and cortical periosteal perimeter were important and sensitive parameters in discriminating osteosarcopenia from osteopenia/osteoporosis subjects. These findings demonstrated that HR-pQCT is a viable and effective screening method for differentiating osteosarcopenia from low bone mineral density alone without the need to carry out multiple assessments for osteosarcopenia, especially for case-finding purposes. This could facilitate the decision of a follow-up and the management of these frail older adults to ensure they receive timely therapeutic interventions to minimise the associated risks.

8.
mBio ; 15(8): e0142024, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39012151

RESUMEN

A substantial percentage of the population remains at risk for cervical cancer due to pre-existing human papillomavirus (HPV) infections, despite prophylactic vaccines. Early diagnosis and treatment are crucial for better disease outcomes. The development of new treatments heavily relies on suitable preclinical model systems. Recently, we established a mouse papillomavirus (MmuPV1) model that is relevant to HPV genital pathogenesis. In the current study, we validated the use of Papanicolaou (Pap) smears, a valuable early diagnostic tool for detecting HPV cervical cancer, to monitor disease progression in the MmuPV1 mouse model. Biweekly cervicovaginal swabs were collected from the MmuPV1-infected mice for viral DNA quantitation and cytology assessment. The Pap smear slides were evaluated for signs of epithelial cell abnormalities using the 2014 Bethesda system criteria. Tissues from the infected mice were harvested at various times post-viral infection for additional histological and virological assays. Over time, increased viral replication was consistent with higher levels of viral DNA, and it coincided with an uptick in epithelial cell abnormalities with higher severity scores noted as early as 10 weeks after viral infection. The cytological results also correlated with the histological evaluation of tissues harvested simultaneously. Both immunocompromised and immunocompetent mice with squamous cell carcinoma (SCC) cytology also developed vaginal SCCs. Notably, samples from the MmuPV1-infected mice exhibited similar cellular abnormalities compared to the corresponding human samples at similar disease stages. Hence, Pap smear screening proves to be an effective tool for the longitudinal monitoring of disease progression in the MmuPV1 mouse model. IMPORTANCE: Papanicolaou (Pap) smear has saved millions of women's lives as a valuable early screening tool for detecting human papillomavirus (HPV) cervical precancers and cancer. However, more than 200,000 women in the United States alone remain at risk for cervical cancer due to pre-existing HPV infection-induced precancers, as there are currently no effective treatments for HPV-associated precancers and cancers other than invasive procedures including a loop electrosurgical excision procedure (LEEP) to remove abnormal tissues. In the current study, we validated the use of Pap smears to monitor disease progression in our recently established mouse papillomavirus model. To the best of our knowledge, this is the first study that provides compelling evidence of applying Pap smears from cervicovaginal swabs to monitor disease progression in mice. This HPV-relevant cytology assay will enable us to develop and test novel antiviral and anti-tumor therapies using this model to eliminate HPV-associated diseases and cancers.


Asunto(s)
Modelos Animales de Enfermedad , Prueba de Papanicolaou , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Animales , Femenino , Ratones , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/diagnóstico , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/patología , Detección Precoz del Cáncer/métodos , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , ADN Viral/genética , Frotis Vaginal , Humanos , Estudios Longitudinales
9.
Comput Methods Programs Biomed ; 242: 107802, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37738839

RESUMEN

Reduced angular sampling is a key strategy for increasing scanning efficiency of micron-scale computed tomography (micro-CT). Despite boosting throughput, this strategy introduces noise and extrapolation artifacts due to undersampling. In this work, we present a solution to this issue, by proposing a novel Dense Residual Hierarchical Transformer (DRHT) network to recover high-quality sinograms from 2×, 4× and 8× undersampled scans. DRHT is trained to utilize limited information available from sparsely angular sampled scans and once trained, it can be applied to recover higher-resolution sinograms from shorter scan sessions. Our proposed DRHT model aggregates the benefits of a hierarchical- multi-scale structure along with the combination of local and global feature extraction through dense residual convolutional blocks and non-overlapping window transformer blocks respectively. We also propose a novel noise-aware loss function named KL-L1 to improve sinogram restoration to full resolution. KL-L1, a weighted combination of pixel-level and distribution-level cost functions, leverages inconsistencies in noise distribution and uses learnable spatial weight maps to improve the training of the DRHT model. We present ablation studies and evaluations of our method against other state-of-the-art (SOTA) models over multiple datasets. Our proposed DRHT network achieves an average increase in peak signal to noise ratio (PSNR) of 17.73 dB and a structural similarity index (SSIM) of 0.161, for 8× upsampling, across the three diverse datasets, compared to their respective Bicubic interpolated versions. This novel approach can be utilized to decrease radiation exposure to patients and reduce imaging time for large-scale CT imaging projects.


Asunto(s)
Artefactos , Concienciación , Humanos , Microtomografía por Rayos X , Radiografía , Relación Señal-Ruido , Atención , Procesamiento de Imagen Asistido por Computador , Algoritmos
10.
Front Endocrinol (Lausanne) ; 14: 1077255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936175

RESUMEN

Background: Elderly people with low lean and high fat mass, are diagnosed with sarcopenic obesity (SO), and often have poor clinical outcomes. This study aimed to explore the relationship between obesity and sarcopenia, and the optimal proportion of fat and muscle for old individuals. Methods: Participants aged 60 years or above were instructed to perform bioelectrical impedance analysis to obtain the muscle and fat indicators, and handgrip strength was also performed. Sarcopenia was diagnosed according to predicted appendicular skeletal muscle mass and function. Body mass index (BMI) and body fat percentage (BF%) were used to define obesity. The association of muscle and fat indicators were analyzed by Pearson's correlation coefficient. Pearson Chi-Square test was utilized to estimate odds ratios (OR) and 95% confidence intervals (CI) on the risk of sarcopenia according to obesity status. Results: 1637 old subjects (74.8 ± 7.8 years) participated in this study. Not only fat mass, but also muscle indicators were positively correlated to BMI and body weight (p < 0.05). Absolute muscle and fat mass in different positions had positive associations (p < 0.05). Muscle mass and strength were negatively related to appendicular fat mass percentage (p < 0.05). When defined by BMI (OR = 0.69, 95% CI [0.56, 0.86]; p = 0.001), obesity was a protective factor for sarcopenia, whilst it was a risk factor when using BF% (OR = 1.38, 95% CI [1.13, 1.69]; p = 0.002) as the definition. The risk of sarcopenia reduced with the increase of BMI in both genders. It was increased with raised BF% in males but displayed a U-shaped curve for females. BF% 26.0-34.6% in old females and lower than 23.9% in old males are recommended for sarcopenia and obesity prevention. Conclusion: Skeletal muscle mass had strong positive relationship with absolute fat mass but negative associations with the percentage of appendicular fat mass. Obesity was a risk factor of sarcopenia when defined by BF% instead of BMI. The management of BF% can accurately help elderly people prevent against both sarcopenia and obesity.


Asunto(s)
Composición Corporal , Obesidad , Sarcopenia , Anciano , Femenino , Humanos , Masculino , Peso Corporal , Fuerza de la Mano , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/diagnóstico , Sarcopenia/etiología , Sarcopenia/prevención & control , Índice de Masa Corporal
11.
Commun Biol ; 6(1): 150, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739308

RESUMEN

Rapid sea-level rise between the Last Glacial Maximum (LGM) and the mid-Holocene transformed the Southeast Asian coastal landscape, but the impact on human demography remains unclear. Here, we create a paleogeographic map, focusing on sea-level changes during the period spanning the LGM to the present-day and infer the human population history in Southeast and South Asia using 763 high-coverage whole-genome sequencing datasets from 59 ethnic groups. We show that sea-level rise, in particular meltwater pulses 1 A (MWP1A, ~14,500-14,000 years ago) and 1B (MWP1B, ~11,500-11,000 years ago), reduced land area by over 50% since the LGM, resulting in segregation of local human populations. Following periods of rapid sea-level rises, population pressure drove the migration of Malaysian Negritos into South Asia. Integrated paleogeographic and population genomic analysis demonstrates the earliest documented instance of forced human migration driven by sea-level rise.


Asunto(s)
Migración Humana , Elevación del Nivel del Mar , Humanos , Sur de Asia , Dinámica Poblacional , Genómica
12.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292910

RESUMEN

Tissue phenotyping is foundational to understanding and assessing the cellular aspects of disease in organismal context and an important adjunct to molecular studies in the dissection of gene function, chemical effects, and disease. As a first step toward computational tissue phenotyping, we explore the potential of cellular phenotyping from 3-Dimensional (3D), 0.74 µm isotropic voxel resolution, whole zebrafish larval images derived from X-ray histotomography, a form of micro-CT customized for histopathology. As proof of principle towards computational tissue phenotyping of cells, we created a semi-automated mechanism for the segmentation of blood cells in the vascular spaces of zebrafish larvae, followed by modeling and extraction of quantitative geometric parameters. Manually segmented cells were used to train a random forest classifier for blood cells, enabling the use of a generalized cellular segmentation algorithm for the accurate segmentation of blood cells. These models were used to create an automated data segmentation and analysis pipeline to guide the steps in a 3D workflow including blood cell region prediction, cell boundary extraction, and statistical characterization of 3D geometric and cytological features. We were able to distinguish blood cells at two stages in development (4- and 5-days-post-fertilization) and wild-type vs. polA2 huli hutu ( hht ) mutants. The application of geometric modeling across cell types to and across organisms and sample types may comprise a valuable foundation for computational phenotyping that is more open, informative, rapid, objective, and reproducible.

13.
Elife ; 122023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294081

RESUMEN

Our interest in the genetic basis of skin color variation between populations led us to seek a Native American population with genetically African admixture but low frequency of European light skin alleles. Analysis of 458 genomes from individuals residing in the Kalinago Territory of the Commonwealth of Dominica showed approximately 55% Native American, 32% African, and 12% European genetic ancestry, the highest Native American genetic ancestry among Caribbean populations to date. Skin pigmentation ranged from 20 to 80 melanin units, averaging 46. Three albino individuals were determined to be homozygous for a causative multi-nucleotide polymorphism OCA2NW273KV contained within a haplotype of African origin; its allele frequency was 0.03 and single allele effect size was -8 melanin units. Derived allele frequencies of SLC24A5A111T and SLC45A2L374F were 0.14 and 0.06, with single allele effect sizes of -6 and -4, respectively. Native American genetic ancestry by itself reduced pigmentation by more than 20 melanin units (range 24-29). The responsible hypopigmenting genetic variants remain to be identified, since none of the published polymorphisms predicted in prior literature to affect skin color in Native Americans caused detectable hypopigmentation in the Kalinago.


The variation in skin colour of modern humans is a product of thousands of years of natural selection. All human ancestry can be traced back to African populations, which were dark-skinned to protect them from the intense UV rays of the sun. Over time, humans spread to other parts of the world, and people in the northern latitudes with lower UV developed lighter skin through natural selection. This was likely driven by a need for vitamin D, which requires UV rays for production. Separate genetic mechanisms were involved in the evolution of lighter skin in each of the two main branches of human migration: the European branch (which includes peoples on the Indian subcontinent and Europe) and the East Asian branch (which includes East Asia and the Americas). A variant of the gene SLC24A5 is the primary contributor to lighter skin colour in the European branch, but a corresponding variant driving light skin colour evolution in the East Asian branch remains to be identified. One obstacle to finding such variants is the high prevalence of European ancestry in most people groups, which makes it difficult to separate the influence of European genes from those of other populations. To overcome this issue, Ang et al. studied a population that had a high proportion of Native American and African ancestors, but a relatively small proportion of European ancestors, the Kalinago people. The Kalinago live on the island of Dominica, one of the last Caribbean islands to be colonised by Europeans. Ang et al. were able to collect hundreds of skin pigmentation measurements and DNA samples of the Kalinago, to trace the effect of Native American ancestry on skin colour. Genetic analysis confirmed their oral history records of primarily Native American (55%) ­ one of the highest of any Caribbean population studied to date ­ compared with African (32%) and European (12%) ancestries. Native American ancestry had the highest effect on pigmentation and reduced it by more than 20 melanin units, while the European mutations in the genes SLC24A5 and SLC45A2 and an African gene variant for albinism only contributed 5, 4 and 8 melanin units, respectively. However, none of the so far published gene candidates responsible for skin lightening in Native Americans caused a detectable effect. Therefore, the gene responsible for lighter skin in Native Americans/East Asians has yet to be identified. The work of Ang et al. represents an important step in deciphering the genetic basis of lighter skin colour in Native Americans or East Asians. A better understanding of the genetics of skin pigmentation may help to identify why, for example, East Asians are less susceptible to melanoma than Europeans, despite both having a lighter skin colour. It may also further acceptance of how variations in human skin tones are the result of human migration, random genetic variation, and natural selection for pigmentation in different solar environments.


Asunto(s)
Indio Americano o Nativo de Alaska , Pueblos Caribeños , Melaninas , Pigmentación de la Piel , Humanos , Alelos , Indio Americano o Nativo de Alaska/genética , Población Negra/genética , Pueblos Caribeños/genética , Etnicidad , Melaninas/genética , Polimorfismo de Nucleótido Simple , Pigmentación de la Piel/genética , Población Blanca/genética
14.
Cell Rep ; 39(12): 110978, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732133

RESUMEN

The cerebrovasculature and its mural cells must meet brain regional energy demands, but how their spatial relationship with different neuronal cell types varies across the brain remains largely unknown. Here we apply brain-wide mapping methods to comprehensively define the quantitative relationships between the cerebrovasculature, capillary pericytes, and glutamatergic and GABAergic neurons, including neuronal nitric oxide synthase-positive (nNOS+) neurons and their subtypes in adult mice. Our results show high densities of vasculature with high fluid conductance and capillary pericytes in primary motor sensory cortices compared with association cortices that show significant positive and negative correlations with energy-demanding parvalbumin+ and vasomotor nNOS+ neurons, respectively. Thalamo-striatal areas that are connected to primary motor sensory cortices also show high densities of vasculature and pericytes, suggesting dense energy support for motor sensory processing areas. Our cellular-resolution resource offers opportunities to examine spatial relationships between the cerebrovascular network and neuronal cell composition in largely understudied subcortical areas.


Asunto(s)
Neuronas GABAérgicas , Parvalbúminas , Animales , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Ratones , Parvalbúminas/metabolismo , Pericitos/metabolismo
15.
Dis Model Mech ; 15(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36125045

RESUMEN

Model organism (MO) research provides a basic understanding of biology and disease due to the evolutionary conservation of the molecular and cellular language of life. MOs have been used to identify and understand the function of orthologous genes, proteins, cells and tissues involved in biological processes, to develop and evaluate techniques and methods, and to perform whole-organism-based chemical screens to test drug efficacy and toxicity. However, a growing richness of datasets and the rising power of computation raise an important question: How do we maximize the value of MOs? In-depth discussions in over 50 virtual presentations organized by the National Institutes of Health across more than 10 weeks yielded important suggestions for improving the rigor, validation, reproducibility and translatability of MO research. The effort clarified challenges and opportunities for developing and integrating tools and resources. Maintenance of critical existing infrastructure and the implementation of suggested improvements will play important roles in maintaining productivity and facilitating the validation of animal models of human biology and disease.


Asunto(s)
Evolución Biológica , Animales , Humanos , Filogenia , Reproducibilidad de los Resultados
16.
J Am Soc Mass Spectrom ; 32(1): 255-261, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33112610

RESUMEN

Variants of the SLC24A5 gene, which encodes a putative potassium-dependent sodium-calcium exchanger (NCKX5) that most likely resides in the melanosome or its precursor, affect pigmentation in both humans and zebrafish (Danio rerio). This finding suggests that genetic variations influencing human skin pigmentation alter melanosome biogenesis via ionic changes. Gaining an understanding of how changes in the ionic environment of organelles impact melanosome morphogenesis and pigmentation will require a spatially resolved way to characterize the chemical environment of melanosomes in pigmented tissue such as retinal pigment epithelium (RPE). The imaging mass spectrometry technique most suited for this type of cell and tissue analysis is time-of-flight secondary ion mass spectrometry (ToF-SIMS) because it is able to detect many biochemical species with high sensitivity and with submicron spatial resolution. Here, we describe chemical imaging of the RPE in frozen-hydrated sections of larval zebrafish using cryo-ToF-SIMS. To facilitate the data interpretation, positive and negative polarity ToF-SIMS image data were transformed into a single hyperspectral data set and analyzed using principal component analysis. The combination of a novel protocol and the use of multivariate data analysis allowed us to discover new marker ions that are attributable to leucodopachrome, a metabolite specific to the biosynthesis of eumelanin. The described methodology may be adapted for the investigation of other classes of molecules in frozen tissues from zebrafish and other organisms.


Asunto(s)
Imagen Molecular/métodos , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Espectrometría de Masa de Ion Secundario/métodos , Animales , Microscopía por Crioelectrón , Cristalinas/análisis , Cristalinas/química , Congelación , Procesamiento de Imagen Asistido por Computador/métodos , Larva , Melaninas/análisis , Fosfolípidos/análisis , Fosfolípidos/química , Análisis de Componente Principal , Epitelio Pigmentado de la Retina/química , Pez Cebra
17.
Med Image Anal ; 67: 101816, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080509

RESUMEN

Histopathological analysis is the present gold standard for precancerous lesion diagnosis. The goal of automated histopathological classification from digital images requires supervised training, which requires a large number of expert annotations that can be expensive and time-consuming to collect. Meanwhile, accurate classification of image patches cropped from whole-slide images is essential for standard sliding window based histopathology slide classification methods. To mitigate these issues, we propose a carefully designed conditional GAN model, namely HistoGAN, for synthesizing realistic histopathology image patches conditioned on class labels. We also investigate a novel synthetic augmentation framework that selectively adds new synthetic image patches generated by our proposed HistoGAN, rather than expanding directly the training set with synthetic images. By selecting synthetic images based on the confidence of their assigned labels and their feature similarity to real labeled images, our framework provides quality assurance to synthetic augmentation. Our models are evaluated on two datasets: a cervical histopathology image dataset with limited annotations, and another dataset of lymph node histopathology images with metastatic cancer. Here, we show that leveraging HistoGAN generated images with selective augmentation results in significant and consistent improvements of classification performance (6.7% and 2.8% higher accuracy, respectively) for cervical histopathology and metastatic cancer datasets.


Asunto(s)
Neoplasias , Humanos
18.
Injury ; 52 Suppl 2: S97-S100, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32654846

RESUMEN

The prevalence of osteoporotic fracture is high due to global aging problem. Delayed and impaired healing in osteoporotic fractures increase the socioeconomic burden significantly. Through intensive animal and clinical research in recent years, the pathogenesis of osteoporotic fracture healing is unveiled, including decreased inflammatory response, reduced mesenchymal stem cells and deteriorated angiogenesis, etc. The enhancement of osteoporotic fracture healing is important in shortening hospitalization, thus reducing related complications. Mechanical stimulation is currently the most well-accepted approach for rehabilitation of osteoporotic fracture patients. Some new interventions providing mechanical signals were explored extensively in recent years, including vibration treatment, and osteoporotic fracture healing was found to respond very well to these signals. Vibration treatment could accelerate osteoporotic fracture healing with improved callus formation, mineralization and remodeling. However, the mechanism of how osteoporotic fracture bones sense mechanical signals and relay to bone formation remains unanswered. Osteocytes are the most abundant cells in bone tissues. Cumulative evidence confirm that osteocyte is a type of mechanosensory cell and shows altered morphology and reduced cell density during aging. Meanwhile, osteocytes serve as endocrine cells to regulate bone and mineral homeostasis. However, the contribution of osteocytes in osteoporotic fracture healing is largely unknown. A recent in vivo study was conducted to examine the morphological and functional changes of osteocytes after vibration treatment in an osteoporotic metaphyseal fracture rat model. The findings demonstrated that vibration treatment induced significant outgrowth of canaliculi and altered expression of various proteins (E11, DMP1, FGF23 and sclerostin), particularly osteocyte-specific dentin matrix protein 1 (DMP1) which was greatly increased. DMP1 may play a major role in relaying mechanical signals to bone formation, which may require further experiments to consolidate. Most importantly, vibration treatment significantly increased the mineralization and accelerated the osteoporotic fracture healing in metaphyseal fracture model. In summary, osteocyte is the major cell type to sense mechanical signals and facilitate downstream healing in osteoporotic fracture bone. Vibration treatment has good potential to be translated for clinical application to benefit osteoporotic fracture patients, while randomized controlled trials are required to validate its efficacy.


Asunto(s)
Fracturas Osteoporóticas , Animales , Factor-23 de Crecimiento de Fibroblastos , Curación de Fractura , Humanos , Osteocitos , Fracturas Osteoporóticas/terapia , Ratas , Ratas Sprague-Dawley , Vibración/uso terapéutico
19.
J Cachexia Sarcopenia Muscle ; 12(6): 2163-2173, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34609065

RESUMEN

BACKGROUND: This study aimed to adjust and cross-validate skeletal muscle mass measurements between bioimpedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA) for the screening of sarcopenia in the community and to estimate the prevalence of sarcopenia in Hong Kong. METHODS: Screening of sarcopenia was provided to community-dwelling older adults. Appendicular skeletal muscle mass (ASM) was evaluated by BIA (InBody 120 or 720) and/or DXA. Handgrip strength and/or gait speed were assessed. Diagnosis of sarcopenia was based on the 2019 revised Asian Working Group for Sarcopenia cut-offs. Agreement analysis was performed to cross-validate ASM measurements by BIA and DXA. Multiple regression was used to explore contribution of measured parameters in predicting DXA ASM from BIA. RESULTS: A total of 1587 participants (age = 72 ± 12 years) were recruited; 1065 participants were screened by BIA (InBody 120) with 18 followed up by DXA, while the remaining 522 participants were assessed by the BIA (InBody 720) and DXA. The appendicular skeletal muscle mass index (ASMI) evaluated by BIA showed a mean difference of 2.89 ± 0.38 kg/m2 (InBody 120) and 2.97 ± 0.45 kg/m2 (InBody 720) against DXA gold standard. A significant overestimation of muscle mass was measured by BIA compared with DXA (P < 0.005). BIA data were adjusted using prediction equation and mean difference reduced to -0.02 ± 0.31 kg/m2 in cross-validation. Prevalence of sarcopenia in older adults ≥65 ranged from 39.4% (based on ASMI by DXA) to 40.8% (based on predicted DXA ASMI from BIA). Low ASMI by DXA was found in 68.5% of the older adults screened. The percentage of older adults exhibited low handgrip strength ranged from 31.3% to 56%, while 49% showed low gait speed. CONCLUSIONS: Bioimpedance analysis was found to overestimate skeletal muscle mass compared with DXA. With adjustment equations, BIA can be used as a quick and reliable tool for screening sarcopenia in community and clinical settings with limited access to better options.


Asunto(s)
Sarcopenia , Absorciometría de Fotón , Anciano , Anciano de 80 o más Años , Composición Corporal , Impedancia Eléctrica , Fuerza de la Mano , Humanos , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Sarcopenia/diagnóstico por imagen , Sarcopenia/epidemiología
20.
Elife ; 102021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34528510

RESUMEN

We previously described X-ray histotomography, a high-resolution, non-destructive form of X-ray microtomography (micro-CT) imaging customized for three-dimensional (3D), digital histology, allowing quantitative, volumetric tissue and organismal phenotyping (Ding et al., 2019). Here, we have combined micro-CT with a novel application of ionic silver staining to characterize melanin distribution in whole zebrafish larvae. The resulting images enabled whole-body, computational analyses of regional melanin content and morphology. Normalized micro-CT reconstructions of silver-stained fish consistently reproduced pigment patterns seen by light microscopy, and further allowed direct quantitative comparisons of melanin content across wild-type and mutant samples, including subtle phenotypes not previously noticed. Silver staining of melanin for micro-CT provides proof-of-principle for whole-body, 3D computational phenomic analysis of a specific cell type at cellular resolution, with potential applications in other model organisms and melanocytic neoplasms. Advances such as this in whole-organism, high-resolution phenotyping provide superior context for studying the phenotypic effects of genetic, disease, and environmental variables.


Asunto(s)
Imagenología Tridimensional/métodos , Melaninas , Tinción con Nitrato de Plata/métodos , Microtomografía por Rayos X/métodos , Proteínas de Pez Cebra , Animales , Melaninas/análisis , Melaninas/química , Pez Cebra , Proteínas de Pez Cebra/análisis , Proteínas de Pez Cebra/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA