Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Physiol ; 236(3): 1628-1637, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32780450

RESUMEN

Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a subtype of the NOX family, which is mainly expressed in the pulmonary vasculature and pulmonary endothelial cells in the respiratory system. NOX4 has unique characteristics, and is a constitutively active enzyme that primarily produces hydrogen peroxide. The signaling pathways associated with NOX4 are complicated. Negative and positive feedback play significant roles in regulating NOX4 expression. The role of NOX4 is controversial because NOX4 plays a protective or damaging role in different respiratory diseases. This review summarizes the structure, enzymatic properties, regulation, and signaling pathways of NOX4. This review then introduces the roles of NOX4 in different diseases in the respiratory system, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis.


Asunto(s)
Enfermedades Pulmonares/enzimología , NADPH Oxidasa 4/metabolismo , Animales , Humanos , Enfermedades Pulmonares/patología , Modelos Biológicos , Transducción de Señal
2.
Cell Biol Int ; 44(1): 98-107, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31329322

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) and chronic inflammation with limited therapeutic options. Psoralen, a major active component extracted from Psoralea corylifolia L. seed, has several biological effects. However, the role of psoralen in IPF is still unclear. Here, we hypothesized that psoralen played an essential role in IPF in the inhibition of fibroblast proliferation and inflammatory response. A murine model of IPF was established by injecting bleomycin (BLM) intratracheally, and psoralen was administered for 14 days from the 7th to 21st day after BLM injection. Our results demonstrated that psoralen treatment reduced body weight loss and improved the survival rate of mice with IPF. Histological and immunofluorescent examination showed that psoralen alleviated BLM-induced lung parenchymal inflammatory and fibrotic alteration. Furthermore, psoralen inhibited proliferation and collagen synthesis of mouse fibroblasts and partially reversed BLM-induced expression of α-smooth muscle actin at both the tissue and cell level. Moreover, psoralen decreased the expression of transforming growth factor-ß1, interleukin-1ß, and tumor necrosis factor-α in the lungs of BLM-stimulated mice. Our results reveale for the first time that psoralen exerts therapeutic effects against IPF in a BLM-induced murine model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA