Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.449
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(15): 3196-3207.e17, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37369204

RESUMEN

Pathogens produce diverse effector proteins to manipulate host cellular processes. However, how functional diversity is generated in an effector repertoire is poorly understood. Many effectors in the devastating plant pathogen Phytophthora contain tandem repeats of the "(L)WY" motif, which are structurally conserved but variable in sequences. Here, we discovered a functional module formed by a specific (L)WY-LWY combination in multiple Phytophthora effectors, which efficiently recruits the serine/threonine protein phosphatase 2A (PP2A) core enzyme in plant hosts. Crystal structure of an effector-PP2A complex shows that the (L)WY-LWY module enables hijacking of the host PP2A core enzyme to form functional holoenzymes. While sharing the PP2A-interacting module at the amino terminus, these effectors possess divergent C-terminal LWY units and regulate distinct sets of phosphoproteins in the host. Our results highlight the appropriation of an essential host phosphatase through molecular mimicry by pathogens and diversification promoted by protein modularity in an effector repertoire.


Asunto(s)
Monoéster Fosfórico Hidrolasas , Phytophthora , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas/metabolismo , Phytophthora/química , Phytophthora/metabolismo , Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteína Fosfatasa 2/metabolismo , Enfermedades de las Plantas
2.
Nature ; 615(7950): 56-61, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859579

RESUMEN

Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.

3.
Nature ; 619(7971): 738-742, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438533

RESUMEN

Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.

4.
Nature ; 602(7897): 431-436, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35173341

RESUMEN

Marked evolution of properties with minute changes in the doping level is a hallmark of the complex chemistry that governs copper oxide superconductivity as manifested in the celebrated superconducting domes and quantum criticality taking place at precise compositions1-4. The strange-metal state, in which the resistivity varies linearly with temperature, has emerged as a central feature in the normal state of copper oxide superconductors5-9. The ubiquity of this behaviour signals an intimate link between the scattering mechanism and superconductivity10-12. However, a clear quantitative picture of the correlation has been lacking. Here we report the observation of precise quantitative scaling laws among the superconducting transition temperature (Tc), the linear-in-T scattering coefficient (A1) and the doping level (x) in electron-doped copper oxide La2-xCexCuO4 (LCCO). High-resolution characterization of epitaxial composition-spread films, which encompass the entire overdoped range of LCCO, has enabled us to systematically map its structural and transport properties with unprecedented accuracy and with increments of Δx = 0.0015. We have uncovered the relations Tc ~ (xc - x)0.5 ~ (A1□)0.5, where xc is the critical doping in which superconductivity disappears and A1□ is the coefficient of the linear resistivity per CuO2 plane. The striking similarity of the Tc versus A1□ relation among copper oxides, iron-based and organic superconductors may be an indication of a common mechanism of the strange-metal behaviour and unconventional superconductivity in these systems.

5.
Nature ; 610(7933): 661-666, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198794

RESUMEN

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the 'second'3-6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10-19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10-19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time-frequency dissemination with an offset of 6.3 × 10-20 ± 3.4 × 10-19 and an instability of less than 4 × 10-19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time-frequency dissemination.

6.
Nature ; 589(7841): 214-219, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33408416

RESUMEN

Quantum key distribution (QKD)1,2 has the potential to enable secure communication and information transfer3. In the laboratory, the feasibility of point-to-point QKD is evident from the early proof-of-concept demonstration in the laboratory over 32 centimetres4; this distance was later extended to the 100-kilometre scale5,6 with decoy-state QKD and more recently to the 500-kilometre scale7-10 with measurement-device-independent QKD. Several small-scale QKD networks have also been tested outside the laboratory11-14. However, a global QKD network requires a practically (not just theoretically) secure and reliable QKD network that can be used by a large number of users distributed over a wide area15. Quantum repeaters16,17 could in principle provide a viable option for such a global network, but they cannot be deployed using current technology18. Here we demonstrate an integrated space-to-ground quantum communication network that combines a large-scale fibre network of more than 700 fibre QKD links and two high-speed satellite-to-ground free-space QKD links. Using a trusted relay structure, the fibre network on the ground covers more than 2,000 kilometres, provides practical security against the imperfections of realistic devices, and maintains long-term reliability and stability. The satellite-to-ground QKD achieves an average secret-key rate of 47.8 kilobits per second for a typical satellite pass-more than 40 times higher than achieved previously. Moreover, its channel loss is comparable to that between a geostationary satellite and the ground, making the construction of more versatile and ultralong quantum links via geosynchronous satellites feasible. Finally, by integrating the fibre and free-space QKD links, the QKD network is extended to a remote node more than 2,600 kilometres away, enabling any user in the network to communicate with any other, up to a total distance of 4,600 kilometres.

7.
Mol Cell ; 76(6): 938-952.e5, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31668930

RESUMEN

High-resolution Cas9 structures have yet to reveal catalytic conformations due to HNH nuclease domain positioning away from the cleavage site. Nme1Cas9 and Nme2Cas9 are compact nucleases for in vivo genome editing. Here, we report structures of meningococcal Cas9 homologs in complex with sgRNA, dsDNA, or the AcrIIC3 anti-CRISPR protein. DNA-bound structures represent an early step of target recognition, a later HNH pre-catalytic state, the HNH catalytic state, and a cleaved-target-DNA-bound state. In the HNH catalytic state of Nme1Cas9, the active site is seen poised at the scissile phosphodiester linkage of the target strand, providing a high-resolution view of the active conformation. The HNH active conformation activates the RuvC domain. Our structures explain how Nme1Cas9 and Nme2Cas9 read distinct PAM sequences and how AcrIIC3 inhibits Nme1Cas9 activity. These structures provide insights into Cas9 domain rearrangements, guide-target engagement, cleavage mechanism, and anti-CRISPR inhibition, facilitating the optimization of these genome-editing platforms.


Asunto(s)
Bacteriófagos/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Neisseria meningitidis/enzimología , Proteínas Virales/metabolismo , Bacteriófagos/genética , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/ultraestructura , Catálisis , ADN/genética , ADN/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Neisseria meningitidis/genética , Unión Proteica , Dominios Proteicos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/ultraestructura
8.
Nature ; 582(7813): 501-505, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32541968

RESUMEN

Quantum key distribution (QKD)1-3 is a theoretically secure way of sharing secret keys between remote users. It has been demonstrated in a laboratory over a coiled optical fibre up to 404 kilometres long4-7. In the field, point-to-point QKD has been achieved from a satellite to a ground station up to 1,200 kilometres away8-10. However, real-world QKD-based cryptography targets physically separated users on the Earth, for which the maximum distance has been about 100 kilometres11,12. The use of trusted relays can extend these distances from across a typical metropolitan area13-16 to intercity17 and even intercontinental distances18. However, relays pose security risks, which can be avoided by using entanglement-based QKD, which has inherent source-independent security19,20. Long-distance entanglement distribution can be realized using quantum repeaters21, but the related technology is still immature for practical implementations22. The obvious alternative for extending the range of quantum communication without compromising its security is satellite-based QKD, but so far satellite-based entanglement distribution has not been efficient23 enough to support QKD. Here we demonstrate entanglement-based QKD between two ground stations separated by 1,120 kilometres at a finite secret-key rate of 0.12 bits per second, without the need for trusted relays. Entangled photon pairs were distributed via two bidirectional downlinks from the Micius satellite to two ground observatories in Delingha and Nanshan in China. The development of a high-efficiency telescope and follow-up optics crucially improved the link efficiency. The generated keys are secure for realistic devices, because our ground receivers were carefully designed to guarantee fair sampling and immunity to all known side channels24,25. Our method not only increases the secure distance on the ground tenfold but also increases the practical security of QKD to an unprecedented level.

9.
Proc Natl Acad Sci U S A ; 120(31): e2303675120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494395

RESUMEN

Anti-CRISPR (Acr) proteins are encoded by phages and other mobile genetic elements and inhibit host CRISPR-Cas immunity using versatile strategies. AcrIIC4 is a broad-spectrum Acr that inhibits the type II-C CRISPR-Cas9 system in several species by an unknown mechanism. Here, we determined a series of structures of Haemophilus parainfluenzae Cas9 (HpaCas9)-sgRNA in complex with AcrIIC4 and/or target DNA, as well as the crystal structure of AcrIIC4 alone. We found that AcrIIC4 resides in the crevice between the REC1 and REC2 domains of HpaCas9, where its extensive interactions restrict the mobility of the REC2 domain and prevent the unwinding of target double-stranded (ds) DNA at the PAM-distal end. Therefore, the full-length guide RNA:target DNA heteroduplex fails to form in the presence of AcrIIC4, preventing Cas9 nuclease activation. Altogether, our structural and biochemical studies illuminate a unique Acr mechanism that allows DNA binding to the Cas9 effector complex but blocks its cleavage by preventing R-loop formation, a key step supporting DNA cleavage by Cas9.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Estructuras R-Loop , ARN Guía de Sistemas CRISPR-Cas , ADN/metabolismo , Bacteriófagos/genética , Edición Génica
10.
Proc Natl Acad Sci U S A ; 120(20): e2300758120, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155871

RESUMEN

In 1967, scientists used a simple climate model to predict that human-caused increases in atmospheric CO2 should warm Earth's troposphere and cool the stratosphere. This important signature of anthropogenic climate change has been documented in weather balloon and satellite temperature measurements extending from near-surface to the lower stratosphere. Stratospheric cooling has also been confirmed in the mid to upper stratosphere, a layer extending from roughly 25 to 50 km above the Earth's surface (S25 - 50). To date, however, S25 - 50 temperatures have not been used in pattern-based attribution studies of anthropogenic climate change. Here, we perform such a "fingerprint" study with satellite-derived patterns of temperature change that extend from the lower troposphere to the upper stratosphere. Including S25 - 50 information increases signal-to-noise ratios by a factor of five, markedly enhancing fingerprint detectability. Key features of this global-scale human fingerprint include stratospheric cooling and tropospheric warming at all latitudes, with stratospheric cooling amplifying with height. In contrast, the dominant modes of internal variability in S25 - 50 have smaller-scale temperature changes and lack uniform sign. These pronounced spatial differences between S25 - 50 signal and noise patterns are accompanied by large cooling of S25 - 50 (1 to 2[Formula: see text]C over 1986 to 2022) and low S25 - 50 noise levels. Our results explain why extending "vertical fingerprinting" to the mid to upper stratosphere yields incontrovertible evidence of human effects on the thermal structure of Earth's atmosphere.

11.
Nucleic Acids Res ; 51(4): 1984-1995, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744495

RESUMEN

Anti-CRISPR proteins are encoded by phages to inhibit the CRISPR-Cas systems of the hosts. AcrIIC5 inhibits several naturally high-fidelity type II-C Cas9 enzymes, including orthologs from Neisseria meningitidis (Nme1Cas9) and Simonsiella muelleri (SmuCas9). Here, we solve the structure of AcrIIC5 in complex with Nme1Cas9 and sgRNA. We show that AcrIIC5 adopts a novel fold to mimic the size and charge distribution of double-stranded DNA, and uses its negatively charged grooves to bind and occlude the protospacer adjacent motif (PAM) binding site in the target DNA cleft of Cas9. AcrIIC5 is positioned into the crevice between the WED and PI domains of Cas9, and one end of the anti-CRISPR interacts with the phosphate lock loop and a linker between the RuvC and BH domains. We employ biochemical and mutational analyses to build a model for AcrIIC5's mechanism of action, and identify residues on both the anti-CRISPR and Cas9 that are important for their interaction and inhibition. Together, the structure and mechanism of AcrIIC5 reveal convergent evolution among disparate anti-CRISPR proteins that use a DNA-mimic strategy to inhibit diverse CRISPR-Cas surveillance complexes, and provide new insights into a tool for potent inhibition of type II-C Cas9 orthologs.


Asunto(s)
Sistemas CRISPR-Cas , Neisseria meningitidis , Neisseriaceae , Proteínas Virales , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , ADN/química , Neisseria meningitidis/virología , Neisseriaceae/virología , Proteínas Virales/metabolismo
12.
Stroke ; 55(8): 2075-2085, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38920043

RESUMEN

BACKGROUND: This study aimed to quantify the global stroke burden attributable to low physical activity and high body mass index in adults aged ≥55 years using data from the Global Burden of Disease 2019 study. METHODS: We extracted data on stroke mortality, disability-adjusted life years, and risk factor exposure from the Global Burden of Disease 2019 study for people aged ≥55 years. We calculated the population-attributable fraction and absolute number of stroke cases and disability-adjusted life years attributable to low physical activity and high body mass index by location, age group, sex, and year. RESULTS: Globally, body mass index and physical inactivity-attributable stroke burden have declined modestly since 1990, but with diverging escalatory regional trajectories. Population growth and aging drive this rising burden. CONCLUSIONS: Multidimensional, context-specific strategies focused on modifiable lifestyle risks are imperative to address the modest declines and escalatory regional trajectories in body mass index and physical inactivity-attributable stroke burden.


Asunto(s)
Índice de Masa Corporal , Ejercicio Físico , Accidente Cerebrovascular , Humanos , Masculino , Anciano , Femenino , Accidente Cerebrovascular/epidemiología , Persona de Mediana Edad , Anciano de 80 o más Años , Carga Global de Enfermedades , Factores de Riesgo , Años de Vida Ajustados por Discapacidad , Conducta Sedentaria
13.
Clin Gastroenterol Hepatol ; 22(2): 305-314, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37659766

RESUMEN

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) has a higher incidence in males, but the association of sex with survival remains controversial. This study aimed to examine the effect of sex on HCC survival and its association with age. METHODS: Among 33,238 patients with HCC from 12 Chinese tertiary hospitals, 4175 patients who underwent curative-intent hepatectomy or ablation were analyzed. Cancer-specific survival (CSS) was analyzed using Cox regression and Kaplan-Meier methods. Two propensity score methods and multiple mediation analysis were applied to mitigate confounding. To explore the effect of estrogen, a candidate sex-specific factor that changes with age, female participants' history of estrogen use, and survival were analyzed. RESULTS: There were 3321 males and 854 females included. A sex-related disparity of CSS was present and showed a typical age-dependent pattern: a female survival advantage over males appeared at the perimenopausal age of 45 to 54 years (hazard risk [HR], 0.77; 5-year CSS, 85.7% vs 70.6%; P = .018), peaked at the early postmenopausal age of 55 to 59 years (HR, 0.57; 5-year CSS, 89.8% vs 73.5%; P = .015), and was not present in the premenopausal (<45 y) and late postmenopausal groups (≥60 y). Consistent patterns were observed in patients after either ablation or hepatectomy. These results were sustained with propensity score analyses. Confounding or mediation effects accounted for only 19.5% of sex survival disparity. Female estrogen users had significantly longer CSS than nonusers (HR, 0.74; 5-year CSS, 79.6% vs 72.5%; P = .038). CONCLUSIONS: A female survival advantage in HCC depends on age, and this may be associated with age-dependent, sex-specific factors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Femenino , Persona de Mediana Edad , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Estudios Retrospectivos , Hepatectomía , Estrógenos , Puntaje de Propensión , Recurrencia Local de Neoplasia/patología
14.
Anal Chem ; 96(28): 11498-11507, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38946253

RESUMEN

The determination of pH values is crucial in various fields, such as analytical chemistry, medical diagnostics, and biochemical research. pH test strips, renowned for their convenience and cost-effectiveness, are commonly utilized for pH qualitative estimation. Recently, quantitative methods for determining pH values using pH test strips have been developed. However, these methods can be prone to errors due to environmental factors, such as lighting conditions, which affect the imaging quality of the pH test strips. To address these challenges, we developed an innovative approach that combines machine learning techniques with pH test strips for the quantitative determination of pH values. Our method involves extracting artificial features from the pH test strip images and combining them across multiple dimensions for comprehensive analysis. To ensure optimal feature selection, we developed a feature selection strategy based on SHAP importance. This strategy helps in identifying the most relevant features that contribute to accurate pH prediction. Furthermore, we integrated multiple machine learning algorithms, employing a robust stacking fusion strategy to establish a highly reliable pH value prediction model. Our proposed method automates the determination of pH values through pH test strips, effectively overcoming the limitations associated with environmental lighting interference. Experimental results demonstrate that this method is convenient, effective, and highly reliable for the determination of pH values.

15.
Anal Chem ; 96(11): 4597-4604, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456210

RESUMEN

DNA assemblies are commonly used in biosensing, particularly for the detection and imaging of microRNAs (miRNAs), which are biomarkers associated with tumor progression. However, the difficulty lies in the exploration of high-sensitivity analytical techniques for miRNA due to its limited presence in living cells. In this study, we introduced a DNA nanosphere (DS) enhanced catalytic hairpin assembly (CHA) system for the detection and imaging of intracellular miR-21. The single-stranded DNA with four palindromic portions and extending sequences at the terminal was annealed for assembling DS, which avoided the complex sequence design and high cost of long DNA strands. Benefiting from the multiple modification sites of DS, functional hairpins H1 (modified with Cy3 and BHQ2) and H2 were grafted onto the surface of DS for assembling DS-H1-H2 using a hybridization reaction. The DS-H1-H2 system utilized spatial confinement and the CHA reaction to amplify fluorescence signals of Cy3. This enabled highly sensitive and rapid detection of miR-21 in the range from 0.05 to 3.5 nM. The system achieved a limit of determination (LOD) of 2.0 pM, which was 56 times lower than that of the control CHA circuit with freedom hairpins. Additionally, the sensitivity was improved by 8 times. Moreover, DS-H1-H2 also showed an excellent imaging capability for endogenous miR-21 in tumor cells. This was due to enhanced cell internalization efficiency, accelerated reaction kinetics, and improved biostability. The imaging strategy was shown to effectively monitor the dynamic content of miR-21 in live cancer cells and differentiate various cells. In general, the simple nanostructure DS not only enhanced the detection and imaging capability of the conventional probe but also could be easily integrated with the reported DNA-free probe, indicating a wide range of potential applications.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , MicroARNs , Nanosferas , Neoplasias , MicroARNs/genética , MicroARNs/química , ADN/genética , ADN/química , Hibridación de Ácido Nucleico , Sondas de ADN/química , Técnicas Biosensibles/métodos , Límite de Detección
16.
Anal Chem ; 96(10): 4282-4289, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38469640

RESUMEN

Chirality is a widespread phenomenon in nature and in living organisms and plays an important role in living systems. The sensitive discrimination of chiral molecular enantiomers remains a challenge in the fields of chemistry and biology. Establishing a simple, fast, and efficient strategy to discriminate the spatial configuration of chiral molecular enantiomers is of great significance. Chiral perovskite nanocrystals (PNCs) have attracted much attention because of their excellent optical activity. However, it is a challenge to prepare perovskites with both chiral and fluorescence properties for chiral sensing. In this work, we synthesized two chiral fluorescent perovskite nanocrystal assembly (PNA) enantiomers by using l- or d-phenylalanine (Phe) as chiral ligands. PNA exhibited good fluorescence recognition for l- and d-proline (Pro). Homochiral interaction led to fluorescence enhancement, while heterochiral interaction led to fluorescence quenching, and there is a good linear relationship between the fluorescence changing rate and l- or d-Pro concentration. Mechanism studies show that homochiral interaction-induced fluorescence enhancement is attributed to the disassembly of chiral PNA, while no disassembly of chiral PNA was found in heterochiral interaction-induced fluorescence quenching, which is attributed to the substitution of Phe on the surface of chiral PNA by heterochiral Pro. This work suggests that chiral perovskite can be used for chiral fluorescence sensing; it will inspire the development of chiral nanomaterials and chiral optical sensors.

17.
Small ; 20(43): e2404080, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38923218

RESUMEN

Functional fibers composed of textiles are considered a promising platform for constructing electronic skin (e-skin). However, developing robust electronic fibers with integrated multiple functions remains a formidable task especially when a complex service environment is concerned. In this work, a continuous and controllable strategy is demonstrated to prepare e-skin-oriented ceramic fibers via coaxial wet spinning followed by cold isostatic pressing. The resulting core-shell structured fiber with tightly compacted Al-doped ZnO nanoparticles in the core and highly ordered aramid nanofibers in the shell exhibit excellent tensile strength (316 MPa) with ultra-high elongation (33%). Benefiting from the susceptible contacts between conducting ceramic nanoparticles, the ceramic fiber shows both ultrahigh sensitivity (gauge factor = 2141) as a strain sensor and a broad working range up to 70 °C as a temperature sensor. Furthermore, the tunable core-shell structure of the fiber enables the optimization of impedance matching and attenuation of electromagnetic waves for the corresponding textile, resulting in a minimum reflection loss of -39.1 dB and an effective absorption bandwidth covering the whole X-band. Therefore, the versatile core-shell ceramic fiber-derived textile can serve as a stealth e-skin for monitoring the motion and temperature of robots under harsh conditions.

18.
Opt Express ; 32(7): 11271-11280, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570978

RESUMEN

The advent of optical metrology applications has necessitated the development of compact, reliable, and cost-effective picosecond lasers operating around 900 nm, specifically catering to the requirements of precise ranging. In response to this demand, our work introduces an innovative solution-an all-fiber, all-polarization-maintaining (PM) figure-9 mode-locked laser operating at 915 nm. The proposed figure-9 Nd-doped fiber laser has a 69.2 m long cavity length, strategically designed and optimized to yield pulses with a combination of high pulse energy and low repetition rate. The laser can generate 915 nm laser pulses with a pulse energy of 4.65 nJ, a pulse duration of 15.2 ps under the repetition rate of 3.05 MHz. The 1064 nm amplified spontaneous emission (ASE) is deliberately filtered out, in order to prevent parasitic lasing and increase the spectral proportion of the 915 nm laser. The all-PM fiber configuration of this laser imparts exceptional mode-locking performance and environmental robustness, which is confirmed by long-term output power and spectral stability test. This compact and long-term reliable fiber laser could be a promising light source for applications like inter-satellite ranging.

19.
Opt Express ; 32(7): 12601-12608, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571078

RESUMEN

Silicon avalanche photodiode (APD) single-photon detectors in space are continuously affected by radiation, which gradually degrades their dark count performance. From August 2016 to June 2023, we conducted approximately seven years (2507 days) of in-orbit monitoring of the dark count performance of APD single-photon detectors on the Micius Quantum Science Experimental Satellite. The results showed that due to radiation effects, the dark count growth rate was approximately 6.79 cps/day @ -24 °C and 0.37 cps/day @ -55 °C, with a significant suppression effect on radiation-induced dark counts at lower operating temperature. Based on the proposed radiation damage induced dark count annealing model, simulations were conducted for the in-orbit dark counts of the detector, the simulation results are consistent with in-orbit test data. In May 2022, four of these detectors underwent a cumulative 5.7 hours high-temperature annealing test at 76 °C, dark count rate shows no measurable changes, consistent with annealing model. As of now, these ten APD single-photon detectors on the Micius Quantum Science Experimental Satellite have been in operation for approximately 2507 days and are still functioning properly, providing valuable experience for the future long-term space applications of silicon APD single-photon detectors.

20.
Opt Express ; 32(7): 12645-12655, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571082

RESUMEN

The space time frequency transfer plays a crucial role in applications such as space optical clock networks, navigation, satellite ranging, and space quantum communication. Here, we propose a high-precision space time frequency transfer and time synchronization scheme based on a simple intensity modulation/direct detection (IM/DD) laser communication system, which occupies a communication bandwidth of approximately 0.2%. Furthermore, utilizing an optical-frequency comb time frequency transfer system as an out-of-loop reference, experimental verification was conducted on a 113 km horizontal atmospheric link, with a long-term stability approximately 8.3 × 10-16 over a duration of 7800 seconds. Over an 11-hour period, the peak-to-peak wander is approximately 100 ps. Our work establishes the foundation of the time frequency transfer, based on the space laser communication channel, for future ground-to-space and inter-satellite links.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA