Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 156(4): 631-2, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24529370

RESUMEN

Finding a cell that reprograms in a nonstochastic manner without genetic manipulation has proven elusive. In this issue, Guo et al. report the identification of a cell defined by an ultrafast cycle whose progeny reprogram in a synchronous and rapid manner.


Asunto(s)
Reprogramación Celular , Células Progenitoras de Granulocitos y Macrófagos/citología , Células Madre Pluripotentes Inducidas , Animales
2.
J Infect Dis ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916431

RESUMEN

BACKGROUND: Post-COVID conditions (PCC) are difficult to characterize, diagnose, predict, and treat due to overlapping symptoms and poorly understood pathology. Identifying inflammatory profiles may improve clinical prognostication and trial endpoints. METHODS: 1,988 SARS-CoV-2 positive U.S. Military Health System beneficiaries with quantitative post-COVID symptom scores were included in this analysis. Among participants who reported moderate-to-severe symptoms on surveys collected 6-months post-SARS-CoV-2 infection, principal component analysis (PCA) followed by K-means clustering identified distinct clusters of symptoms. RESULTS: Three symptom-based clusters were identified: a sensory cluster (loss of smell and/or taste), a fatigue/difficulty thinking cluster, and a difficulty breathing/exercise intolerance cluster. Individuals within the sensory cluster were all outpatients during their initial COVID-19 presentation. The difficulty breathing cluster had a higher likelihood of obesity and COVID-19 hospitalization compared to those with no/mild symptoms at 6-months post-infection. Multinomial regression linked early post-infection D-dimer and IL-1RA elevation to fatigue/difficulty thinking, and elevated ICAM-1 concentrations to sensory symptoms. CONCLUSIONS: We identified three distinct symptom-based PCC phenotypes with specific clinical risk factors and early post-infection inflammatory predictors. With further validation and characterization, this framework may allow more precise classification of PCC cases and potentially improve the diagnosis, prognostication, and treatment of PCC.

3.
Commun Med (Lond) ; 4(1): 120, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890515

RESUMEN

BACKGROUND: Sepsis from infection is a global health priority and clinical trials have failed to deliver effective therapeutic interventions. To address complicating heterogeneity in sepsis pathobiology, and improve outcomes, promising precision medicine approaches are helping identify disease endotypes, however, they require a more complete definition of sepsis subgroups. METHODS: Here, we use RNA sequencing from peripheral blood to interrogate the host response to sepsis from participants in a global observational study carried out in West Africa, Southeast Asia, and North America (N = 494). RESULTS: We identify four sepsis subtypes differentiated by 28-day mortality. A low mortality immunocompetent group is specified by features that describe the adaptive immune system. In contrast, the three high mortality groups show elevated clinical severity consistent with multiple organ dysfunction. The immunosuppressed group members show signs of a dysfunctional immune response, the acute-inflammation group is set apart by molecular features of the innate immune response, while the immunometabolic group is characterized by metabolic pathways such as heme biosynthesis. CONCLUSIONS: Our analysis reveals details of molecular endotypes in sepsis that support immunotherapeutic interventions and identifies biomarkers that predict outcomes in these groups.


Sepsis is a life-threatening multi-organ failure caused by the body's immune response to infection. Clinical symptoms of sepsis vary from one person to another likely due to differences in host factors, infecting pathogen, and comorbidities. This difference in clinical symptoms may contribute to the lack of effective interventions for sepsis. Therefore, approaches tailored to targeting groups of patients who present similarly are of great interest. This study analysed a large group of sepsis patients with diverse symptoms using laboratory markers and mathematical analysis. We report four patient groups that differ by risk of death and immune response profile. Targeting these defined groups with tailored interventions presents an exciting opportunity to improve the health outcomes of patients with sepsis.

4.
Nat Commun ; 15(1): 4606, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816375

RESUMEN

Our limited understanding of the pathophysiological mechanisms that operate during sepsis is an obstacle to rational treatment and clinical trial design. There is a critical lack of data from low- and middle-income countries where the sepsis burden is increased which inhibits generalized strategies for therapeutic intervention. Here we perform RNA sequencing of whole blood to investigate longitudinal host response to sepsis in a Ghanaian cohort. Data dimensional reduction reveals dynamic gene expression patterns that describe cell type-specific molecular phenotypes including a dysregulated myeloid compartment shared between sepsis and COVID-19. The gene expression signatures reported here define a landscape of host response to sepsis that supports interventions via targeting immunophenotypes to improve outcomes.


Asunto(s)
COVID-19 , Fenotipo , Sepsis , Transcriptoma , Humanos , Sepsis/genética , Sepsis/sangre , Sepsis/inmunología , COVID-19/inmunología , COVID-19/genética , COVID-19/sangre , COVID-19/virología , Ghana/epidemiología , Masculino , Estudios de Cohortes , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Femenino , Adulto , Persona de Mediana Edad , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
5.
Gastroenterology ; 142(3): 602-11, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22138358

RESUMEN

BACKGROUND & AIMS: Many studies of embryonic stem cells have investigated direct cell replacement of damaged tissues, but little is known about how donor cell-derived signals affect host tissue regeneration. We investigated the direct and indirect roles of human embryonic stem cell-derived cells in liver repair in mice. METHODS: To promote the initial differentiation of human embryonic stem cells into mesendoderm, we activated the ß-catenin signaling pathway with lithium; cells were then further differentiated into hepatocyte-like cells. The differentiated cells were purified by indocyanine green staining and laser microdissection and characterized by immunostaining, polymerase chain reaction, biochemical function, electron microscopy, and transplantation analyses. To investigate indirect effects of these cells, secreted proteins (secretomes) were analyzed by a label-free quantitative mass spectrometry. Carbon tetrachloride was used to induce acute liver injury in mice; cells or secreted proteins were administered by intrasplenic or intraperitoneal injection, respectively. RESULTS: The differentiated hepatocyte-like cells had multiple features of normal hepatocytes, engrafted efficiently into mice, and continued to have hepatic features; they promoted proliferation of host hepatocytes and revascularization of injured host liver tissues. Proteomic analysis identified proteins secreted from these cells that might promote host tissue repair. Injection of the secreted proteins into injured livers of mice promoted significant amounts of tissue regeneration without cell grafts. CONCLUSIONS: Hepatocyte-like cells derived from human embryonic stem cells contribute to recovery of injured liver tissues in mice, not only by cell replacement but also by delivering trophic factors that support endogenous liver regeneration.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/cirugía , Células Madre Embrionarias/trasplante , Hepatocitos/trasplante , Células Madre Pluripotentes Inducidas/trasplante , Regeneración Hepática , Hígado/patología , Animales , Biomarcadores/metabolismo , Tetracloruro de Carbono , Diferenciación Celular/efectos de los fármacos , Separación Celular/métodos , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Captura por Microdisección con Láser , Cloruro de Litio/farmacología , Hígado/irrigación sanguínea , Hígado/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Electrónica , Neovascularización Fisiológica , Reacción en Cadena de la Polimerasa , Proteómica/métodos , Factores de Tiempo , Cicatrización de Heridas
6.
Nature ; 448(7150): 196-9, 2007 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-17597760

RESUMEN

The application of human embryonic stem (ES) cells in medicine and biology has an inherent reliance on understanding the starting cell population. Human ES cells differ from mouse ES cells and the specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo before implantation in the uterus. Here we show that cell lines can be derived from the epiblast, a tissue of the post-implantation embryo that generates the embryo proper. These cells, which we refer to as EpiSCs (post-implantation epiblast-derived stem cells), express transcription factors known to regulate pluripotency, maintain their genomic integrity, and robustly differentiate into the major somatic cell types as well as primordial germ cells. The EpiSC lines are distinct from mouse ES cells in their epigenetic state and the signals controlling their differentiation. Furthermore, EpiSC and human ES cells share patterns of gene expression and signalling responses that normally function in the epiblast. These results show that epiblast cells can be maintained as stable cell lines and interrogated to understand how pluripotent cells generate distinct fates during early development.


Asunto(s)
Línea Celular , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Implantación del Embrión , Células Madre Embrionarias/metabolismo , Expresión Génica , Humanos , Ratones , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
7.
SLAS Technol ; 28(6): 442-448, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37844868

RESUMEN

Rapid and accurate measurements of immune protein markers are essential for diagnosis and treatment in all clinical settings. The recent pandemic has revealed a stark need for developing new tools and assays that could be rapidly used in diverse settings and provide useful information to clinicians. Here, we describe the development and test application of a novel one-step CRP/IP-10 duplex assay for the LightDeck platform capable of delivering reproducible and accurate measurements in under eight minutes. We used the optimized assay to measure CRP and IP-10 levels in human blood and serum samples from healthy, SARS-CoV-2 (COVID-19) positive, and influenza-like illness (ILI) presenting patients. Our results agreed with previously published analyte levels and enabled us to make statistically significant comparisons relevant to multiple clinical parameters. Our duplex assay is a simple and powerful tool for aiding prognostic decision-making in diverse settings.


Asunto(s)
COVID-19 , Sistemas de Atención de Punto , Humanos , Biomarcadores , Quimiocina CXCL10/sangre , Quimiocina CXCL10/química , COVID-19/diagnóstico , SARS-CoV-2 , Proteína C-Reactiva/química
8.
Am J Trop Med Hyg ; 107(6): 1302-1307, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36375459

RESUMEN

The use of positive blood culture bottles for direct disk diffusion susceptibility testing (dDD), together with chromogenic culture limited to groups of pathogens for antimicrobial susceptibility testing interpretation may provide a means for laboratories-in-development to introduce rapid abbreviated blood culture testing. We assessed the performance of dDD on Chromatic MH agar using contrived positive blood culture bottles and compared findings with current standard practice. Furthermore, we characterized the growth of 24 bacterial and 3 yeast species on Chromatic MH agar with the aid of rapid spot tests for same-day identification. The coefficient of variation for reproducibility of dDD of four reference strains in 4 to 10 replicates (238 data points) ranged from 0% to 16.3%. Together with an additional 10 challenge isolates, the overall categorical agreement was 91.7% (351 data points). The following bacteria were readily identifiable: cream/white Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus pyogenes; turquoise Streptococcus agalactiae, enterococci, Listeria monocytogenes; mauve Escherichia coli, Shigella sonnei, Citrobacter freundii; dark-blue Klebsiella and Enterobacter; green Pseudomonas aeruginosa; and brown Proteus. Clear colonies were seen with Salmonella, Acinetobacter, Burkholderia, and Yersinia enterocolitica (turns pink). Our study suggests that Chromatic MH for dDD may show promise as a rapid, clinically useful presumptive method for overnight simultaneous identification and antimicrobial susceptibility testing. However, there is a need to optimize the medium formulation to allow the recovery of Streptococcus pneumoniae and Haemophilus influenzae.


Asunto(s)
Antiinfecciosos , Cultivo de Sangre , Humanos , Agar , Identificación Social , Reproducibilidad de los Resultados , Streptococcus pyogenes , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
9.
PLoS One ; 17(8): e0272572, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35947596

RESUMEN

BACKGROUND: Venous phlebotomy performed by trained personnel is critical for patient diagnosis and monitoring of chronic disease, but has limitations in resource-constrained settings, and represents an infection control challenge during outbreaks. Self-collection devices have the potential to shift phlebotomy closer to the point of care, supporting telemedicine strategies and virtual clinical trials. Here we assess a capillary blood micro-sampling device, the Tasso Serum Separator Tube (SST), for measuring blood protein levels in healthy subjects and non-hospitalized COVID-19 patients. METHODS: 57 healthy controls and 56 participants with mild/moderate COVID-19 were recruited at two U.S. military healthcare facilities. Healthy controls donated Tasso SST capillary serum, venous plasma and venous serum samples at multiple time points, while COVID-19 patients donated a single Tasso SST serum sample at enrolment. Concentrations of 17 protein inflammatory biomarkers were measured in all biospecimens by Ella multi-analyte immune-assay. RESULTS: Tasso SST serum protein measurements in healthy control subjects were highly reproducible, but their agreements with matched venous samples varied. Most of the selected proteins, including CRP, Ferritin, IL-6 and PCT, were well-correlated between Tasso SST and venous serum with little sample type bias, but concentrations of D-dimer, IL-1B and IL-1Ra were not. Self-collection at home with delayed sample processing was associated with significant concentrations differences for several analytes compared to supervised, in-clinic collection with rapid processing. Finally, Tasso SST serum protein concentrations were significantly elevated in in non-hospitalized COVID-19 patients compared with healthy controls. CONCLUSIONS: Self-collection of capillary blood with micro-sampling devices provides an attractive alternative to routine phlebotomy. However, concentrations of certain analytes may differ significantly from those in venous samples, and factors including user proficiency, temperature control and time lags between specimen collection and processing need to be considered for their effect on sample quality and reproducibility.


Asunto(s)
COVID-19 , Proteínas Sanguíneas , Recolección de Muestras de Sangre , COVID-19/diagnóstico , Voluntarios Sanos , Humanos , Reproducibilidad de los Resultados , Manejo de Especímenes
10.
Open Forum Infect Dis ; 8(12): ofab556, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34909439

RESUMEN

BACKGROUND: We evaluated clinical outcomes, functional burden, and complications 1 month after coronavirus disease 2019 (COVID-19) infection in a prospective US Military Health System (MHS) cohort of active duty, retiree, and dependent populations using serial patient-reported outcome surveys and electronic medical record (EMR) review. METHODS: MHS beneficiaries presenting at 9 sites across the United States with a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test, a COVID-19-like illness, or a high-risk SARS-CoV-2 exposure were eligible for enrollment. Medical history and clinical outcomes were collected through structured interviews and International Classification of Diseases-based EMR review. Risk factors associated with hospitalization were determined by multivariate logistic regression. RESULTS: A total of 1202 participants were enrolled. There were 1070 laboratory-confirmed SARS-CoV-2 cases and 132 SARS-CoV-2-negative participants. In the first month post-symptom onset among the SARS-CoV-2-positive cases, there were 212 hospitalizations, 80% requiring oxygen, 20 ICU admissions, and 10 deaths. Risk factors for COVID-19-associated hospitalization included race (increased for Asian, Black, and Hispanic compared with non-Hispanic White), age (age 45-64 and 65+ compared with <45), and obesity (BMI≥30 compared with BMI<30). Over 2% of survey respondents reported the need for supplemental oxygen, and 31% had not returned to normal daily activities at 1 month post-symptom onset. CONCLUSIONS: Older age, reporting Asian, Black, or Hispanic race/ethnicity, and obesity are associated with SARS-CoV-2 hospitalization. A proportion of acute SARS-CoV-2 infections require long-term oxygen therapy; the impact of SARS-CoV-2 infection on short-term functional status was substantial. A significant number of MHS beneficiaries had not yet returned to normal activities by 1 month.

11.
Dev Growth Differ ; 52(3): 293-301, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20298258

RESUMEN

Gastrulation is the defining feature of metazoan development where it serves to apportion seemingly equivalent, pluripotent cells to specific fates. The three embryonic germ layers generated during gastrulation from the pluripotent epiblast including ectoderm, mesoderm, and definitive endoderm, contain the progenitors required to build all of the tissues of the developing organism. As a result, there is great interest in understanding the events that coordinate gastrulation. Because developing embryos in placental mammals are relatively inaccessible, stem cells are widely used for experimental and biochemical interrogation of these processes. Epiblast stem cells (EpiSCs) are grown from the post-implantation epiblast, which is the most proximal pluripotent tissue to the early somatic and germ cell precursors. Because EpiSCs can be propagated indefinitely in vitro as a stable state that recapitulates the properties of the post-implantation epiblast, they are uniquely positioned to provide novel insight into the developmental window where somatic and germ cell lineages are first established. Here we discuss the nature of EpiSCs and their significance in understanding gastrulation and cell specification in relationship to other pluripotent cell culture models.


Asunto(s)
Células Madre Embrionarias/citología , Estratos Germinativos/citología , Animales , Diferenciación Celular , Separación Celular , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Femenino , Gastrulación/genética , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/metabolismo , Humanos , Ratones , Modelos Biológicos , Proteína Nodal/genética , Proteína Nodal/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Embarazo , Primates , Transducción de Señal
12.
Stem Cells ; 27(1): 116-25, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18403757

RESUMEN

Oligodendrocytes derived in the laboratory from stem cells have been proposed as a treatment for acute and chronic injury to the central nervous system. Platelet-derived growth factor (PDGF) receptor alpha (PDGFRalpha) signaling is known to regulate oligodendrocyte precursor cell numbers both during development and adulthood. Here, we analyze the effects of PDGFRalpha signaling on central nervous system (CNS) stem cell-enriched cultures. We find that AC133 selection for CNS progenitors acutely isolated from the fetal cortex enriches for PDGF-AA-responsive cells. PDGF-AA treatment of fibroblast growth factor 2-expanded CNS stem cell-enriched cultures increases nestin(+) cell number, viability, proliferation, and glycolytic rate. We show that a brief exposure to PDGF-AA rapidly and efficiently permits the derivation of O4(+) oligodendrocyte-lineage cells from CNS stem cell-enriched cultures. The derivation of oligodendrocyte-lineage cells demonstrated here may support the effective use of stem cells in understanding fate choice mechanisms and the development of new therapies targeting this cell type.


Asunto(s)
Neuronas/citología , Oligodendroglía/citología , Células Madre/citología , Animales , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Sistema Nervioso Central/citología , Medio de Cultivo Libre de Suero , Proteínas de Filamentos Intermediarios/metabolismo , Ligandos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos
13.
PLoS Genet ; 3(8): e136, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17708682

RESUMEN

The identification of regulatory elements from different cell types is necessary for understanding the mechanisms controlling cell type-specific and housekeeping gene expression. Mapping DNaseI hypersensitive (HS) sites is an accurate method for identifying the location of functional regulatory elements. We used a high throughput method called DNase-chip to identify 3,904 DNaseI HS sites from six cell types across 1% of the human genome. A significant number (22%) of DNaseI HS sites from each cell type are ubiquitously present among all cell types studied. Surprisingly, nearly all of these ubiquitous DNaseI HS sites correspond to either promoters or insulator elements: 86% of them are located near annotated transcription start sites and 10% are bound by CTCF, a protein with known enhancer-blocking insulator activity. We also identified a large number of DNaseI HS sites that are cell type specific (only present in one cell type); these regions are enriched for enhancer elements and correlate with cell type-specific gene expression as well as cell type-specific histone modifications. Finally, we found that approximately 8% of the genome overlaps a DNaseI HS site in at least one the six cell lines studied, indicating that a significant percentage of the genome is potentially functional.


Asunto(s)
Cromatina/química , Genoma Humano , Especificidad de Órganos/genética , Elementos Reguladores de la Transcripción , Secuencia de Bases , Sitios de Unión , Factor de Unión a CCCTC , Linaje de la Célula/genética , Células Cultivadas , Mapeo Cromosómico , Análisis por Conglomerados , Islas de CpG/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Células HeLa , Humanos , Elementos Aisladores/genética , Células K562 , Análisis por Micromatrices , Datos de Secuencia Molecular , Proteínas Represoras/metabolismo , Proyectos de Investigación , Análisis de Secuencia de ADN/métodos
14.
Stem Cells Transl Med ; 4(11): 1251-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26371344

RESUMEN

UNLABELLED: Interest is great in the new molecular concepts that explain, at the level of signal transduction, the process of reprogramming. Usually, transcription factors with developmental importance are used, but these approaches give limited information on the signaling networks involved, which could reveal new therapeutic opportunities. Recent findings involving reprogramming by genetic means and soluble factors with well-studied downstream signaling mechanisms, including signal transducer and activator of transcription 3 (STAT3) and hairy and enhancer of split 3 (Hes3), shed new light into the molecular mechanisms that might be involved. We examine the appropriateness of common culture systems and their ability to reveal unusual (noncanonical) signal transduction pathways that actually operate in vivo. We then discuss such novel pathways and their importance in various plastic cell types, culminating in their emerging roles in reprogramming mechanisms. We also discuss a number of reprogramming paradigms (mouse induced pluripotent stem cells, direct conversion to neural stem cells, and in vivo conversion of acinar cells to ß-like cells). Specifically for acinar-to-ß-cell reprogramming paradigms, we discuss the common view of the underlying mechanism (involving the Janus kinase-STAT pathway that leads to STAT3-tyrosine phosphorylation) and present alternative interpretations that implicate STAT3-serine phosphorylation alone or serine and tyrosine phosphorylation occurring in sequential order. The implications for drug design and therapy are important given that different phosphorylation sites on STAT3 intercept different signaling pathways. We introduce a new molecular perspective in the field of reprogramming with broad implications in basic, biotechnological, and translational research. SIGNIFICANCE: Reprogramming is a powerful approach to change cell identity, with implications in both basic and applied biology. Most efforts involve the forced expression of key transcription factors, but recently, success has been reported with manipulating signal transduction pathways that might intercept them. It is important to start connecting the function of the classic reprogramming genes to signaling pathways that also mediate reprogramming, unifying the sciences of signal transduction, stem cell biology, and epigenetics. Neural stem cell studies have revealed the operation of noncanonical signaling pathways that are now appreciated to also operate during reprogramming, offering new mechanistic explanations.


Asunto(s)
Reprogramación Celular , Proteínas de Unión al ADN/biosíntesis , Células-Madre Neurales/metabolismo , Factor de Transcripción STAT3/biosíntesis , Transducción de Señal , Factores de Transcripción/biosíntesis , Animales , Proteínas de Unión al ADN/genética , Humanos , Células-Madre Neurales/citología , Proteínas Represoras , Factor de Transcripción STAT3/genética , Factores de Transcripción/genética
15.
Cell Stem Cell ; 14(6): 854-63, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24905169

RESUMEN

Naive mouse embryonic stem cells (mESCs) and primed epiblast stem cells (mEpiSCs) represent successive snapshots of pluripotency during embryogenesis. Using transcriptomic and epigenomic mapping we show that a small fraction of transcripts are differentially expressed between mESCs and mEpiSCs and that these genes show expected changes in chromatin at their promoters and enhancers. Unexpectedly, the cis-regulatory circuitry of genes that are expressed at identical levels between these cell states also differs dramatically. In mESCs, these genes are associated with dominant proximal enhancers and dormant distal enhancers, which we term seed enhancers. In mEpiSCs, the naive-dominant enhancers are lost, and the seed enhancers take up primary transcriptional control. Seed enhancers have increased sequence conservation and show preferential usage in downstream somatic tissues, often expanding into super enhancers. We propose that seed enhancers ensure proper enhancer utilization and transcriptional fidelity as mammalian cells transition from naive pluripotency to a somatic regulatory program.


Asunto(s)
Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Ratones
16.
Stem Cells Transl Med ; 3(7): 867-78, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24855277

RESUMEN

The ability to differentiate induced pluripotent stem cells (iPSCs) into committed skeletal progenitors could allow for an unlimited autologous supply of such cells for therapeutic uses; therefore, we attempted to create novel bone-forming cells from human iPSCs using lines from two distinct tissue sources and methods of differentiation that we previously devised for osteogenic differentiation of human embryonic stem cells, and as suggested by other publications. The resulting cells were assayed using in vitro methods, and the results were compared with those obtained from in vivo transplantation assays. Our results show that true bone was formed in vivo by derivatives of several iPSC lines, but that the successful cell lines and differentiation methodologies were not predicted by the results of the in vitro assays. In addition, bone was formed equally well from iPSCs originating from skin or bone marrow stromal cells (also known as bone marrow-derived mesenchymal stem cells), suggesting that the iPSCs did not retain a "memory" of their previous life. Furthermore, one of the iPSC-derived cell lines formed verifiable cartilage in vivo, which likewise was not predicted by in vitro assays.


Asunto(s)
Bioensayo/métodos , Diferenciación Celular , Condrocitos/metabolismo , Condrogénesis , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Anciano , Anciano de 80 o más Años , Animales , Línea Celular , Reprogramación Celular , Condrocitos/trasplante , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Masculino , Trasplante de Células Madre Mesenquimatosas , Ratones , Osteoblastos/trasplante , Fenotipo , Transfección
17.
Stem Cell Res ; 10(1): 57-66, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23117585

RESUMEN

Much of the excitement generated by induced pluripotent stem cell technology is concerned with the possibility of disease modeling as well as the potential for personalized cell therapy. However, to pursue this it is important to understand the 'normal' pluripotent state including its inherent variability. We have performed various molecular profiling assays for 21 hESC lines and 8 hiPSC lines to generate a comprehensive snapshot of the undifferentiated state of pluripotent stem cells. Analysis of the gene expression data revealed no iPSC-specific gene expression pattern in accordance with previous reports. We further compared cells, differentiated as embryoid bodies in 2 media proposed to initiate differentiation towards separate cell fates, as well as 20 adult tissues. From this analysis we have generated a gene list which defines pluripotency and establishes a baseline for the pluripotent state. Finally, we provide lists of genes enriched under both differentiation conditions which show the proposed bias toward independent cell fates.


Asunto(s)
Bases de Datos Factuales , Células Madre Pluripotentes/metabolismo , Animales , Línea Celular , Perfilación de la Expresión Génica , Humanos , Ratones , National Institutes of Health (U.S.) , Células Madre Pluripotentes/citología , Análisis de Componente Principal , Estados Unidos
18.
Curr Biol ; 22(18): 1705-10, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22902753

RESUMEN

Sox2 is an important transcriptional regulator in embryonic and adult stem cells. Recently, Sox2 was identified as an oncogene in many endodermal cancers, including colon cancer. There is great interest in how Sox2 cooperates with other transcription factors to regulate stem cell renewal, differentiation, and reprogramming. However, we still lack a general understanding of Sox2 transcriptional action. To determine transcriptional partners of Sox2 in adult cells, we generated mice where gene expression could be induced by an externally applied stimulus. We analyzed the consequences in the intestine where cell turnover is rapid. Sox2 expression, but not Oct4, specifically increased the numbers of stem cells and repressed Cdx2, a master regulator of endodermal identity. In vivo studies demonstrated that Sox21, another member of the SoxB gene family, was a specific, immediate, and cell-autonomous target of Sox2 in intestinal stem cells. In vitro experiments showed that Sox21 was sufficient to repress Cdx2 in colon cancer cells and in pluripotent stem cells. Sox21 was also specifically induced by Sox2 in fibroblasts and inhibition of Sox21 blocked reprogramming to the pluripotent state. These results show that transcriptional induction of Sox21 is a rapid and general mediator of the effects of Sox2 on cell identity in a wide range of cell types.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB2/metabolismo , Activación Transcripcional , Animales , Factor de Transcripción CDX2 , Diferenciación Celular/genética , Línea Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/antagonistas & inhibidores , Mucosa Intestinal/metabolismo , Intestinos/citología , Ratones , Ratones Transgénicos , Factor 3 de Transcripción de Unión a Octámeros/biosíntesis , Células Madre Pluripotentes/citología , Factores de Transcripción SOXB2/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Transcripción Genética
19.
PLoS One ; 7(9): e45282, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028905

RESUMEN

Fibroblasts can be collected from deceased individuals, grown in culture, reprogrammed into induced pluripotent stem cells (iPSCs), and then differentiated into a multitude of cell types, including neurons. Past studies have generated iPSCs from somatic cell biopsies from either animal or human subjects. Previously, fibroblasts have only been successfully cultured from postmortem human skin in two studies. Here we present data on fibroblast cell cultures generated from 146 scalp and/or 53 dura mater samples from 146 postmortem human brain donors. In our overall sample, the odds of successful dural culture was almost two-fold compared with scalp (OR = 1.95, 95% CI: [1.01, 3.9], p = 0.047). Using a paired design within subjects for whom both tissues were available for culture (n = 53), the odds of success for culture in dura was 16-fold as compared to scalp (OR = 16.0, 95% CI: [2.1-120.6], p = 0.0007). Unattended death, tissue donation source, longer postmortem interval (PMI), and higher body mass index (BMI) were associated with unsuccessful culture in scalp (all p<0.05), but not in dura. While scalp cells proliferated more and grew more rapidly than dura cells [F (1, 46) = 12.94, p<0.008], both tissues could be generated and maintained as fibroblast cell lines. Using a random sample of four cases, we found that both postmortem scalp and dura could be successfully reprogrammed into iPSC lines. Our study demonstrates that postmortem dura mater, and to a lesser extent, scalp, are viable sources of living fibroblasts for culture that can be used to generate iPSCs. These tissues may be accessible through existing brain tissue collections, which is critical for studying disorders such as neuropsychiatric diseases.


Asunto(s)
Autopsia/métodos , Técnicas de Cultivo de Célula , Duramadre/citología , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Cuero Cabelludo/citología , Adulto , Índice de Masa Corporal , Diferenciación Celular , Proliferación Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Manejo de Especímenes , Factores de Tiempo
20.
Cell Stem Cell ; 8(3): 318-25, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21362571

RESUMEN

Pluripotent stem cells provide a platform to interrogate control elements that function to generate all cell types of the body. Despite their utility for modeling development and disease, the relationship of mouse and human pluripotent stem cell states to one another remains largely undefined. We have shown that mouse embryonic stem (ES) cells and epiblast stem cells (EpiSCs) are distinct, pluripotent states isolated from pre- and post-implantation embryos respectively. Human ES cells are different than mouse ES cells and share defining features with EpiSCs, yet are derived from pre-implantation human embryos. Here we show that EpiSCs can be routinely derived from pre-implantation mouse embryos. The preimplantation-derived EpiSCs exhibit molecular features and functional properties consistent with bona fide EpiSCs. These results provide a simple method for isolating EpiSCs and offer direct insight into the intrinsic and extrinsic mechanisms that regulate the acquisition of distinct pluripotent states.


Asunto(s)
Blastocisto/citología , Separación Celular/métodos , Estratos Germinativos/citología , Células Madre/citología , Animales , Secuencia de Bases , Blastocisto/metabolismo , Diferenciación Celular/genética , Islas de CpG/genética , Metilación de ADN/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA