Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042488

RESUMEN

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Asunto(s)
Elastasa de Leucocito , Transcortina , Glicosilación , Hidrocortisona/metabolismo , Elastasa de Leucocito/metabolismo , Polisacáridos , Proteolisis , Transcortina/genética , Transcortina/química , Transcortina/metabolismo , Humanos
2.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725484

RESUMEN

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Asunto(s)
Glicopéptidos/sangre , Glicoproteínas/sangre , Informática/métodos , Proteoma/análisis , Proteómica/métodos , Investigadores/estadística & datos numéricos , Programas Informáticos , Glicosilación , Humanos , Proteoma/metabolismo , Espectrometría de Masas en Tándem
3.
Biochem Soc Trans ; 49(1): 161-186, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33439247

RESUMEN

Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018-2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.


Asunto(s)
Glicómica/tendencias , Glicoproteínas/química , Proteómica/tendencias , Glicómica/métodos , Glicopéptidos/química , Glicosilación , Humanos , Conformación Proteica , Proteómica/métodos
5.
Curr Opin Chem Biol ; 73: 102272, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36758418

RESUMEN

N-Glycoproteomics, the system-wide study of glycans asparagine-linked to protein carriers, holds a unique and still largely untapped potential to provide deep insights into the complexity and dynamics of the heterogeneous N-glycoproteome. Despite the advent of innovative analytical and informatics tools aiding the analysis, N-glycoproteomics remains challenging and consequently largely restricted to specialised laboratories. Aiming to stimulate discussions of method harmonisation, data standardisation and reporting guidelines to make N-glycoproteomics more reproducible and accessible to the community, we here discuss critical considerations related to the design and execution of N-glycoproteomics experiments and highlight good practices in N-glycopeptide data collection, analysis, interpretation and sharing. Giving the rapid maturation and, expectedly, a wide-spread implementation of N-glycoproteomics capabilities across the community in future years, this piece aims to point out common pitfalls, to encourage good data sharing and documentation practices, and to highlight practical solutions and strategies to enhance the insight into the N-glycoproteome.


Asunto(s)
Glicoproteínas , Espectrometría de Masas en Tándem , Glicosilación , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Glicopéptidos , Proteoma/metabolismo
6.
Methods Mol Biol ; 2628: 235-263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781790

RESUMEN

Mass spectrometry-driven glycomics and glycoproteomics, the system-wide profiling of detached glycans and intact glycopeptides from biological samples, respectively, are powerful approaches to interrogate the heterogenous glycoproteome. Efforts to develop integrated workflows employing both glycomics and glycoproteomics have been invested since the concerted application of these complementary approaches enables a deeper exploration of the glycoproteome. This protocol paper outlines, step-by-step, an integrated -omics technology, the "glycomics-assisted glycoproteomics" method, that first establishes the N-glycan fine structures and their quantitative distribution pattern of protein extracts via porous graphitized carbon-LC-MS/MS. The N-glycome information is then used to augment and guide the challenging reversed-phase LC-MS/MS-based profiling of intact N-glycopeptides from the same protein samples. Experimental details and considerations relating to the sample preparation and the N-glycomics and N-glycoproteomics data collection, analysis, and integration are discussed. Benefits of the glycomics-assisted glycoproteomics method, which can be readily applied to both simple and complex biological specimens such as protein extracts from cells, tissues, and bodily fluids (e.g., serum), include quantitative information of the protein carriers and site(s) of glycosylation, site occupancy, and the site-specific glycan structures directly from biological samples. The glycomics-assisted glycoproteomics method therefore facilitates a comprehensive view of the complexity and dynamics of the heterogenous glycoproteome.


Asunto(s)
Glicómica , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Glicómica/métodos , Espectrometría de Masas en Tándem/métodos , Glicopéptidos/química , Proteoma , Polisacáridos/química
7.
Protein Sci ; 29(12): 2495-2509, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33085168

RESUMEN

Corticosteroid-binding globulin (CBG) transports cortisol and other steroids. High-affinity CBG (haCBG) undergoes proteolysis of the reactive center loop (RCL) by neutrophil elastase (NE) altering conformation to low-affinity CBG (laCBG). Elevated temperature reduces CBG:cortisol binding affinity. Surface plasmon resonance was used to determine binding profiles of 19 steroids to haCBG and laCBG at 25, 37, and 39°C mimicking pyrexia and pH 7.4 and 7.0 mimicking acidosis, pathophysiological conditions relevant to sepsis. An expected 4-8-fold reduction in affinity for cortisol, cortisone, corticosterone, 11-deoxycortisol, progesterone, 17-hydroxyprogesterone, and prednisolone occurred with NE-mediated haCBG-to-laCBG conversion. CBG:cortisol binding affinity was further reduced 3.5-fold at 39°C relative to 37°C, binding affinity was also reduced by acidosis for both haCBG and laCBG. Using a conformational antibody generated against the RCL, we confirmed RCL antibody binding was eliminated by NE cleavage, but preserved in pyrexia and acidosis. Molecular modeling studies performed at 40°C confirmed a critical role for Trp371, positioned within the steroid-binding pocket, in ligand binding. These studies demonstrated CBG binding affinity to range of steroids is ligand specific and is reduced with NE-mediated haCBG-to-laCBG transition. Reduced CBG:cortisol binding occurs with increased temperature and in acidosis. Increased flexibility of the Trp371 side chain is proposed in the thermo-coupling mechanism of cortisol release. The synergy of NE cleavage, pyrexia, and acidosis on CBG:cortisol binding may serve to enhance cortisol delivery to the interstitial space in inflammation.


Asunto(s)
17-alfa-Hidroxiprogesterona/química , Elastasa de Leucocito/química , Prednisolona/química , Transcortina/química , Dominio Catalítico , Calor , Humanos , Concentración de Iones de Hidrógeno , Elastasa de Leucocito/metabolismo , Transcortina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA