Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 148(6): 1110-22, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22424223

RESUMEN

Although development leads unidirectionally toward more restricted cell fates, recent work in cellular reprogramming has proven that one cellular identity can strikingly convert into another, promising countless applications in biomedical research and paving the way for modeling diseases with patient-derived stem cells. To date, there has been little discussion of which disease models are likely to be most informative. Here, we review evidence demonstrating that, because environmental influences and epigenetic signatures are largely erased during reprogramming, patient-specific models of diseases with strong genetic bases and high penetrance are likely to prove most informative in the near term. We also discuss the implications of the new reprogramming paradigm in biomedicine and outline how reprogramming of cell identities is enhancing our understanding of cell differentiation and prospects for cellular therapies and in vivo regeneration.


Asunto(s)
Medicina Regenerativa , Trasplante de Células Madre , Técnicas de Cultivo de Célula , Reprogramación Celular , Enfermedad/genética , Epigenómica , Humanos , Células Madre Pluripotentes/citología , Células Madre/citología
2.
Annu Rev Med ; 64: 277-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23327523

RESUMEN

The conversion of somatic cells into pluripotent cells is transforming the way diseases are researched and treated. Induced pluripotent stem (iPS) cells' promise may soon be realized in the field of hematology, as hematopoietic stem cell transplants are already commonplace in clinics around the world. We provide a current comparison between induced pluripotent and embryonic stem cells, describe progress toward modeling hematological disorders using iPS cells, and illustrate the hurdles that must be overcome before iPS cell therapies will be available in clinics.


Asunto(s)
Células Madre Embrionarias/trasplante , Células Madre Pluripotentes Inducidas/trasplante , Células Madre Pluripotentes/trasplante , Medicina Regenerativa/métodos , Trasplante de Células Madre/métodos , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes/citología
3.
Stem Cells ; 31(7): 1287-97, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23400930

RESUMEN

In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here, we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases.


Asunto(s)
ADN Mitocondrial/genética , Células Madre Pluripotentes Inducidas/fisiología , Enfermedades Mitocondriales/genética , Acil-CoA Deshidrogenasa de Cadena Larga/deficiencia , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patología , Diferenciación Celular/genética , Línea Celular , Preescolar , Síndromes Congénitos de Insuficiencia de la Médula Ósea , ADN Mitocondrial/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/metabolismo , Errores Innatos del Metabolismo Lipídico/patología , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Eliminación de Secuencia
4.
Front Oncol ; 12: 1011081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212425

RESUMEN

T cells play a key role in anticancer immunity, with responses mediated through a diversity of αß or γδ T cell receptors. Although αß and γδ T cells stem from common thymic precursors, the development and subsequent biological roles of these two subsets differ considerably. γδ T cells are an unconventional T cell subset, uniquely poised between the adaptive and innate immune systems, that possess the ability to recognize intracellular disturbances and non-peptide-based antigens to eliminate tumors. These distinctive features of γδ T cells have led to recent interest in developing γδ-inspired therapies for treating cancer patients. In this minireview, we explore the biology of γδ T cells, including how the γδ T cell immune surveillance system can detect intracellular disturbances, and propose a framework to understand the γδ T cell-inspired therapeutic strategies entering the clinic today.

5.
Nat Biotechnol ; 33(1): 58-63, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25437882

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV), episomal (Epi) and mRNA transfection mRNA methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA