Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 46(4): 577-586, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28410988

RESUMEN

CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Citometría de Flujo , Humanos , Inmunoterapia/métodos , Células K562 , Estimación de Kaplan-Meier , Depleción Linfocítica , Ratones , Neoplasias/patología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica/inmunología , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Linfocitos T Reguladores/metabolismo
2.
Mol Ther ; 32(6): 1672-1686, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38549377

RESUMEN

Stem cell gene therapy and hematopoietic stem cell transplantation (SCT) require conditioning to ablate the recipient's hematopoietic stem cells (HSCs) and create a niche for gene-corrected/donor HSCs. Conventional conditioning agents are non-specific, leading to off-target toxicities and resulting in significant morbidity and mortality. We developed tissue-specific anti-human CD45 antibody-drug conjugates (ADCs), using rat IgG2b anti-human CD45 antibody clones YTH24.5 and YTH54.12, conjugated to cytotoxic pyrrolobenzodiazepine (PBD) dimer payloads with cleavable (SG3249) or non-cleavable (SG3376) linkers. In vitro, these ADCs internalized to lysosomes for drug release, resulting in potent and specific killing of human CD45+ cells. In humanized NSG mice, the ADCs completely ablated human HSCs without toxicity to non-hematopoietic tissues, enabling successful engraftment of gene-modified autologous and allogeneic human HSCs. The ADCs also delayed leukemia onset and improved survival in CD45+ tumor models. These data provide proof of concept that conditioning with anti-human CD45-PBD ADCs allows engraftment of donor/gene-corrected HSCs with minimal toxicity to non-hematopoietic tissues. Our anti-CD45-PBDs or similar agents could potentially shift the paradigm in transplantation medicine that intensive chemo/radiotherapy is required for HSC engraftment after gene therapy and allogeneic SCT. Targeted conditioning both improve the safety and minimize late effects of these procedures, which would greatly increase their applicability.


Asunto(s)
Benzodiazepinas , Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Inmunoconjugados , Antígenos Comunes de Leucocito , Animales , Humanos , Ratones , Inmunoconjugados/farmacología , Antígenos Comunes de Leucocito/metabolismo , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Benzodiazepinas/farmacología , Benzodiazepinas/química , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Ratas , Acondicionamiento Pretrasplante/métodos , Modelos Animales de Enfermedad , Anticuerpos Monoclonales/farmacología , Pirroles
3.
Cytotherapy ; 25(1): 46-58, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36396552

RESUMEN

BACKGROUND AIMS: The targeting of solid cancers with chimeric antigen receptor (CAR) T cells faces many technological hurdles, including selection of optimal target antigens. Promising pre-clinical and clinical data of CAR T-cell activity have emerged from targeting surface antigens such as GD2 and B7H3 in childhood cancer neuroblastoma. Anaplastic lymphoma kinase (ALK) is expressed in a majority of neuroblastomas at low antigen density but is largely absent from healthy tissues. METHODS: To explore an alternate target antigen for neuroblastoma CAR T-cell therapy, the authors generated and screened a single-chain variable fragment library targeting ALK extracellular domain to make a panel of new anti-ALK CAR T-cell constructs. RESULTS: A lead novel CAR T-cell construct was capable of specific cytotoxicity against neuroblastoma cells expressing low levels of ALK, but with only weak cytokine and proliferative T-cell responses. To explore strategies for amplifying ALK CAR T cells, the authors generated a co-CAR approach in which T cells received signal 1 from a first-generation ALK construct and signal 2 from anti-B7H3 or GD2 chimeric co-stimulatory receptors. The co-CAR approach successfully demonstrated the ability to avoid targeting single-antigen-positive targets as a strategy for mitigating on-target off-tumor toxicity. CONCLUSIONS: These data provide further proof of concept for ALK as a neuroblastoma CAR T-cell target.


Asunto(s)
Neuroblastoma , Receptores de Antígenos de Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T/genética , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Gangliósidos , Neuroblastoma/genética , Neuroblastoma/terapia , Linfocitos T , Inmunoterapia Adoptiva , Anticuerpos , Lógica
4.
J Nanobiotechnology ; 21(1): 357, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784150

RESUMEN

Colorectal cancer (CRC) is one of the deadliest cancers worldwide, with the 5 year survival rate in metastatic cases limited to 12%. The design of targeted and effective therapeutics remains a major unmet clinical need in CRC treatment. Carcinoembryonic antigen (CEA), a glycoprotein overexpressed in most colorectal tumors, may constitute a promising molecule for generating novel CEA-targeted therapeutic strategies for CRC treatment. Here, we developed a smart nanoplatform based on chemical conjugation of an anti-CEA single-chain variable fragment (scFv), MFE-23, with PLGA-PEG polymers to deliver the standard 5-Fluorouracil (5-FU) chemotherapy to CRC cells. We confirmed the specificity of the developed CEA-targeted NPs on the internalization by CEA-expressing CRC cells, with an enhance of threefold in the cell uptake. Additionally, CEA-targeted NPs loaded with 5-FU induced higher cytotoxicity in CEA-expressing cells, after 24 h and 48 h of treatment, reinforcing the specificity of the targeted NPs. Lastly, the safety of CEA-targeted NPs loaded with 5-FU was evaluated in donor-isolated macrophages, with no relevant impact on their metabolic activity nor polarization. Altogether, this proof of concept supports the CEA-mediated internalization of targeted NPs as a promising chemotherapeutic strategy for further investigation in different CEA-associated cancers and respective metastatic sites.Authors: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Maria José] Last name [Silveira]. Author 7 Given name: [Maria José] Last name [Oliveira]. Also, kindly confirm the details in the metadata are correctokAffiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.ok.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Anticuerpos de Cadena Única , Humanos , Antígeno Carcinoembrionario/metabolismo , Anticuerpos de Cadena Única/uso terapéutico , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Neoplasias Colorrectales/metabolismo , Nanopartículas/química
5.
Small ; 17(14): e2005241, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33734595

RESUMEN

Magnetic hyperthermia (MH) harnesses the heat-releasing properties of superparamagnetic iron oxide nanoparticles (SPIONs) and has potential to stimulate immune activation in the tumor microenvironment whilst sparing surrounding normal tissues. To assess feasibility of localized MH in vivo, SPIONs are injected intratumorally and their fate tracked by Zirconium-89-positron emission tomography, histological analysis, and electron microscopy. Experiments show that an average of 49% (21-87%, n = 9) of SPIONs are retained within the tumor or immediately surrounding tissue. In situ heating is subsequently generated by exposure to an externally applied alternating magnetic field and monitored by thermal imaging. Tissue response to hyperthermia, measured by immunohistochemical image analysis, reveals specific and localized heat-shock protein expression following treatment. Tumor growth inhibition is also observed. To evaluate the potential effects of MH on the immune landscape, flow cytometry is used to characterize immune cells from excised tumors and draining lymph nodes. Results show an influx of activated cytotoxic T cells, alongside an increase in proliferating regulatory T cells, following treatment. Complementary changes are found in draining lymph nodes. In conclusion, results indicate that biologically reactive MH is achievable in vivo and can generate localized changes consistent with an anti-tumor immune response.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Compuestos Férricos , Humanos , Hipertermia , Campos Magnéticos , Magnetismo
6.
Small ; 15(13): e1900205, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30828968

RESUMEN

Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as potential clinical tools for cancer theranostics. Membrane-bound 70 kDa heat shock protein (mHsp70) is ubiquitously expressed on the cell membrane of various tumor types but not normal cells and therefore provides a tumor-specific target. The serine protease granzyme B (GrB) that is produced as an effector molecule by activated T and NK cells has been shown to specifically target mHsp70 on tumor cells. Following binding to Hsp70, GrB is rapidly internalized into tumor cells. Herein, it is demonstrated that GrB functionalized SPIONs act as a contrast enhancement agent for magnetic resonance imaging and induce specific tumor cell apoptosis. Combinatorial regimens employing stereotactic radiotherapy and/or magnetic targeting are found to further enhance the therapeutic efficacy of GrB-SPIONs in different tumor mouse models.


Asunto(s)
Membrana Celular/metabolismo , Granzimas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Nanopartículas/química , Neoplasias/diagnóstico , Neoplasias/terapia , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Terapia Combinada , Dextranos/química , Femenino , Humanos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Masculino , Ratones Endogámicos C57BL , Ratones SCID , Neoplasias/diagnóstico por imagen , Ratas Wistar , Nanomedicina Teranóstica
7.
Bioconjug Chem ; 29(2): 486-492, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29384367

RESUMEN

We describe investigations to expand the scope of next generation maleimide cross-linkers for the construction of homogeneous protein-protein conjugates. Diiodomaleimides are shown to offer the ideal properties of rapid bioconjugation with reduced hydrolysis, allowing the cross-linking of even sterically hindered systems. The optimized linkers are exploited to link human serum albumin to antibody fragments (Fab or scFv) as a prospective half-life extension platform, with retention of antigen binding and robust serum stability. Finally, a triprotein conjugate is formed, by linking scFv antibody fragments targeting carcinoembryonic antigen. This tri-scFv is shown to infer a combination of greater antigen avidity and increased in vivo half-life, representing a promising platform for antibody therapeutic development.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Inmunoconjugados/química , Maleimidas/química , Albúmina Sérica Humana/química , Anticuerpos de Cadena Única/química , Humanos , Hidrólisis , Fragmentos Fab de Inmunoglobulinas/química , Modelos Moleculares
8.
Biotechnol Bioeng ; 115(11): 2760-2770, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30102764

RESUMEN

The bioprocessing of a fusion protein is characterised by low yields and at a series of recovery and purification stages that leads to an overall 90% loss. Much of this apparent loss is due to the denaturation of a protein, missing a vital affinity ligand. However, there is evidence of the protection of degradation products which occurs in the presence of shear plus air/liquid interfaces. This study seeks out to characterise the loss and use ultra-scale-down studies to predict its occurrence and hence shows these may be diminished by the use of protective reagents such as Pluronic F68.


Asunto(s)
Poloxámero/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Tensoactivos/metabolismo , Reactores Biológicos , Pichia/crecimiento & desarrollo , Pichia/metabolismo , Desnaturalización Proteica , Proteínas Recombinantes de Fusión/química
9.
Cancer Immunol Immunother ; 66(11): 1425-1436, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28660319

RESUMEN

The primary aim of this clinical trial was to determine the feasibility of delivering first-generation CAR T cell therapy to patients with advanced, CEACAM5+ malignancy. Secondary aims were to assess clinical efficacy, immune effector function and optimal dose of CAR T cells. Three cohorts of patients received increasing doses of CEACAM5+-specific CAR T cells after fludarabine pre-conditioning plus systemic IL2 support post T cell infusion. Patients in cohort 4 received increased intensity pre-conditioning (cyclophosphamide and fludarabine), systemic IL2 support and CAR T cells. No objective clinical responses were observed. CAR T cell engraftment in patients within cohort 4 was significantly higher. However, engraftment was short-lived with a rapid decline of systemic CAR T cells within 14 days. Patients in cohort 4 had transient, acute respiratory toxicity which, in combination with lack of prolonged CAR T cell persistence, resulted in the premature closure of the trial. Elevated levels of systemic IFNγ and IL-6 implied that the CEACAM5-specific T cells had undergone immune activation in vivo but only in patients receiving high-intensity pre-conditioning. Expression of CEACAM5 on lung epithelium may have resulted in this transient toxicity. Raised levels of serum cytokines including IL-6 in these patients implicate cytokine release as one of several potential factors exacerbating the observed respiratory toxicity. Whilst improved CAR designs and T cell production methods could improve the systemic persistence and activity, methods to control CAR T 'on-target, off-tissue' toxicity are required to enable a clinical impact of this approach in solid malignancies.


Asunto(s)
Antígeno Carcinoembrionario/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Dolor Abdominal/etiología , Adulto , Anciano , Anemia/etiología , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/metabolismo , Estudios de Cohortes , Ciclofosfamida/administración & dosificación , Ciclofosfamida/efectos adversos , Resistencia a Antineoplásicos , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia Adoptiva/efectos adversos , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-6/inmunología , Interleucina-6/metabolismo , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Agonistas Mieloablativos/efectos adversos , Agonistas Mieloablativos/agonistas , Neoplasias/genética , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Linfocitos T/trasplante , Resultado del Tratamiento , Vidarabina/administración & dosificación , Vidarabina/efectos adversos , Vidarabina/análogos & derivados , Vómitos/etiología
10.
Biotechnol Bioeng ; 113(1): 130-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26174988

RESUMEN

Fusion-tag affinity chromatography is a key technique in recombinant protein purification. Current methods for protein recovery from mammalian cells are hampered by the need for feed stream clarification. We have developed a method for direct capture using immobilized metal affinity chromatography (IMAC) of hexahistidine (His6) tagged proteins from unclarified mammalian cell feed streams. The process employs radial flow chromatography with 300-500 µm diameter agarose resin beads that allow free passage of cells but capture His-tagged proteins from the feed stream; circumventing expensive and cumbersome centrifugation and/or filtration steps. The method is exemplified by Chinese Hamster Ovary (CHO) cell expression and subsequent recovery of recombinant His-tagged carcinoembryonic antigen (CEA); a heavily glycosylated and clinically relevant protein. Despite operating at a high NaCl concentration necessary for IMAC binding, cells remained over 96% viable after passage through the column with host cell proteases and DNA detected at ∼ 8 U/mL and 2 ng/µL in column flow-through, respectively. Recovery of His-tagged CEA from unclarified feed yielded 71% product recovery. This work provides a basis for direct primary capture of fully glycosylated recombinant proteins from unclarified mammalian cell feed streams.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Animales , Células CHO/metabolismo , Antígeno Carcinoembrionario/aislamiento & purificación , Antígeno Carcinoembrionario/metabolismo , Supervivencia Celular , Cricetulus , Microesferas , Proteínas Recombinantes de Fusión/metabolismo , Cloruro de Sodio/metabolismo
11.
Int J Cancer ; 137(8): 1910-20, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25895046

RESUMEN

Surgery is the cornerstone of oncologic therapy with curative intent. However, identification of tumor cells in the resection margins is difficult, resulting in nonradical resections, increased cancer recurrence and subsequent decreased patient survival. Novel imaging techniques that aid in demarcating tumor margins during surgery are needed. Overexpression of carcinoembryonic antigen (CEA) is found in the majority of gastrointestinal carcinomas, including colorectal and pancreas. We developed ssSM3E/800CW, a novel CEA-targeted near-infrared fluorescent (NIRF) tracer, based on a disulfide-stabilized single-chain antibody fragment (ssScFv), to visualize colorectal and pancreatic tumors in a clinically translatable setting. The applicability of the tracer was tested for cell and tissue binding characteristics and dosing using immunohistochemistry, flow cytometry, cell-based plate assays and orthotopic colorectal (HT-29, well differentiated) and pancreatic (BXPC-3, poorly differentiated) xenogeneic human-mouse models. NIRF signals were visualized using the clinically compatible FLARE™ imaging system. Calculated clinically relevant doses of ssSM3E/800CW selectively accumulated in colorectal and pancreatic tumors/cells, with highest tumor-to-background ratios of 5.1 ± 0.6 at 72 hr postinjection, which proved suitable for intraoperative detection and delineation of tumor boarders and small (residual) tumor nodules in mice, between 8 and 96 hr postinjection. Ex vivo fluorescence imaging and pathologic examination confirmed tumor specificity and the distribution of the tracer. Our results indicate that ssSM3E/800CW shows promise as a diagnostic tool to recognize colorectal and pancreatic cancers for fluorescent-guided surgery applications. If successfully translated clinically, this tracer could help improve the completeness of surgery and thus survival.


Asunto(s)
Bencenosulfonatos/química , Antígeno Carcinoembrionario/metabolismo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/metabolismo , Indoles/química , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Anticuerpos de Cadena Única , Animales , Células CACO-2 , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Femenino , Células HCT116 , Células HT29 , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Especificidad de Órganos , Anticuerpos de Cadena Única/química , Espectroscopía Infrarroja Corta
12.
Eur J Nucl Med Mol Imaging ; 42(2): 288-301, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25391547

RESUMEN

PURPOSE: Human epidermal growth factor receptor-2 (HER2) overexpression is a predictor of response to anti-HER2 therapy in breast and gastric cancer. Currently, HER2 status is assessed by tumour biopsy, but this may not be representative of the larger tumour mass or other metastatic sites, risking misclassification and selection of suboptimal therapy. The designed ankyrin repeat protein (DARPin) G3 binds HER2 with high affinity at an epitope that does not overlap with trastuzumab and is biologically inert. We hypothesized that radiolabelled DARPin G3 would be capable of selectively imaging HER2-positive tumours, and aimed to identify a suitable format for clinical application. METHODS: G3 DARPins tagged with hexahistidine (His6) or with histidine glutamate (HE)3 and untagged G3 DARPins were manufactured using a GMP-compatible Pichia pastoris protocol and radiolabelled with (125)I, or with (111)In via DOTA linked to a C-terminal cysteine. BALB/c mice were injected with radiolabelled G3 and tissue biodistribution was evaluated by gamma counting. The lead construct ((HE)3-G3) was assessed in mice bearing HER2-positive human breast tumour (BT474) xenografts. RESULTS: For both isotopes, (HE)3-G3 had significantly lower liver uptake than His6-G3 and untagged G3 counterparts in non-tumour-bearing mice, and there was no significantly different liver uptake between His6-G3 and untagged G3. (HE)3-G3 was taken forward for evaluation in mice bearing HER2-positive tumour xenografts. The results demonstrated that radioactivity from (111)In-(HE)3-G3 was better maintained in tumours and cleared faster from serum than radioactivity from (125)I-(HE)3-G3, achieving superior tumour-to-blood ratios (343.7 ± 161.3 vs. 22.0 ± 11.3 at 24 h, respectively). On microSPECT/CT, (111)In-labelled and (125)I-labelled (HE)3-G3 could image HER2-positive tumours at 4 h after administration, but there was less normal tissue uptake of radioactivity with (111)In-(HE)3-G3. Preadministration of trastuzumab did not affect the uptake of (HE)3-G3 by HER2-positive tumours. CONCLUSION: Radiolabelled DARPin (HE)3-G3 is a versatile radioligand with potential to allow the acquisition of whole-body HER2 scans on the day of administration.


Asunto(s)
Repetición de Anquirina , Complejos de Coordinación/farmacocinética , Radiofármacos/farmacocinética , Receptor ErbB-2/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Animales , Línea Celular Tumoral , Femenino , Humanos , Radioisótopos de Indio/farmacocinética , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Proteínas Recombinantes de Fusión/farmacocinética , Distribución Tisular
13.
Bioconjug Chem ; 25(8): 1395-401, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25033024

RESUMEN

We report on a chemical platform to generate site-specific, homogeneous, antibody-antibody conjugates by targeting and bridging disulfide bonds. A bispecific antibody construct was produced in good yield through simple reduction and bridging of antibody fragment disulfide bonds, using a readily synthesized bis-dibromomaleimide cross-linker. Binding activity of antibodies was maintained, and in vitro binding of target antigens was observed. This technology is demonstrated through linking scFv and Fab antibody fragments, showing its potential for the construction of a diverse range of bispecifics.


Asunto(s)
Especificidad de Anticuerpos , Disulfuros/química , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/inmunología , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
14.
Org Biomol Chem ; 12(37): 7261-9, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25103319

RESUMEN

The advent of Adcetris™ and Kadcyla™, two recently FDA-approved antibody-drug conjugates (ADCs), in the clinic has had a major impact on the treatment of lymphoma and breast cancer patients, respectively, worldwide. Despite these successes many new ADCs fail at various stages of development, often due to shortcomings in the methods used for their assembly. To address this problem we have developed next generation maleimides (NGMs), which specifically re-bridge reduced interchain disulfide bonds and allow the efficient conjugation of small molecules to antibodies, without the need for engineering of the target antibody. The method is site-specific and generates near homogeneous products in good yields. Moreover, adjustment of the reaction conditions allows control of the conjugation in terms of stoichiometry (drug-loading) and site selectivity. Using this method we prepared a series of ADCs from trastuzumab and doxorubicin (DOX) with a controlled drug-to-antibody ratio (DAR) of 1, 2, 3 and 4. All of these constructs were fully active by ELISA and had more than 90% of re-bridged disulfide bonds by CE-SDS when compared to clinical grade antibody. Furthermore, digest experiments of the DAR 2 material revealed that almost all of the drug had been targeted to the Fab arms of the antibody. Thus, NGMs offer a flexible and simple platform for the controlled assembly of ADCs from an antibody.


Asunto(s)
Anticuerpos Monoclonales Humanizados/química , Anticuerpos/química , Disulfuros/química , Doxorrubicina/química , Maleimidas/síntesis química , Maleimidas/química , Estructura Molecular , Trastuzumab
15.
Sci Transl Med ; 16(749): eadg9814, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809963

RESUMEN

T cell-based cancer immunotherapy has typically relied on membrane-bound cytotoxicity enhancers such as chimeric antigen receptors expressed in autologous αß T cells. These approaches are limited by tonic signaling of synthetic constructs and costs associated with manufacturing. γδ T cells are an emerging alternative for cellular therapy, having innate antitumor activity, potent antibody-dependent cellular cytotoxicity, and minimal alloreactivity. We present an immunotherapeutic platform technology built around the innate properties of the Vγ9Vδ2 T cell, harnessing specific characteristics of this cell type and offering an allocompatible cellular therapy that recruits bystander immunity. We engineered γδ T cells to secrete synthetic tumor-targeting opsonins in the form of an scFv-Fc fusion protein and a mitogenic IL-15Rα-IL-15 fusion protein (stIL15). Using GD2 as a model antigen, we show that GD2-specific opsonin-secreting Vγ9Vδ2 T cells (stIL15-OPS-γδ T cells) have enhanced cytotoxicity and promote bystander activity of other lymphoid and myeloid cells. Secretion of stIL-15 abrogated the need for exogenous cytokine supplementation and further mediated activation of bystander natural killer cells. Compared with unmodified γδ T cells, stIL15-OPS-γδ T cells exhibited superior in vivo control of subcutaneous tumors and persistence in the blood. Moreover, stIL15-OPS-γδ T cells were efficacious against patient-derived osteosarcomas in animal models and in vitro, where efficacy could be boosted with the addition of zoledronic acid. Together, the data identify stIL15-OPS-γδ T cells as a candidate allogeneic cell therapy platform combining direct cytolysis with bystander activation to promote tumor control.


Asunto(s)
Osteosarcoma , Receptores de Antígenos de Linfocitos T gamma-delta , Animales , Osteosarcoma/terapia , Osteosarcoma/inmunología , Osteosarcoma/patología , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica , Ratones , Linfocitos T/inmunología , Ácido Zoledrónico/farmacología , Efecto Espectador , Interleucina-15 , Ingeniería Celular
16.
Cell Death Dis ; 14(2): 104, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765035

RESUMEN

Treatment with oncolytic measles vaccines (MV) elicits activation of immune cells, including natural killer (NK) cells. However, we found that MV-activated NK cells show only modest direct cytotoxic activity against tumor cells. To specifically direct NK cells towards tumor cells, we developed oncolytic measles vaccines encoding bispecific killer engagers (MV-BiKE) targeting CD16A on NK cells and carcinoembryonic antigen (CEA) as a model tumor antigen. MV-BiKE are only slightly attenuated compared to parental MV and mediate secretion of functional BiKE from infected tumor cells. We tested MV-BiKE activity in cocultures of colorectal or pancreatic cancer cells with primary human NK cells. MV-BiKE mediate expression of effector cytokines, degranulation and specific anti-tumor cytotoxicity by NK cells. Experiments with patient-derived pancreatic cancer cultures indicate that efficacy of MV-BiKE may vary between individual tumors with differential virus permissiveness. Remarkably, we confirmed MV-BiKE activity in primaryhuman colorectal carcinoma specimens with autochthonous tumor and NK cells.This study provides proof-of-concept for MV-BiKE as a novel immunovirotherapy to harness virus-activated NK cells as anti-tumor effectors.


Asunto(s)
Sarampión , Neoplasias Pancreáticas , Vacunas , Humanos , Células Asesinas Naturales , Antígenos de Neoplasias/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Vacunas/metabolismo , Sarampión/metabolismo , Línea Celular Tumoral
17.
Bioconjug Chem ; 23(8): 1524-33, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22681552

RESUMEN

The potential for protein-engineered biotherapeutics is enormous, but pharmacokinetic modulation is a major challenge. Manipulating pharmacokinetics, biodistribution, and bioavailability of small peptide/protein units such as antibody fragments is a major pharmaceutical ambition, illustrated by the many chemical conjugation and recombinant fusion approaches being developed. We describe a recombinant approach that leads to successful incorporation of polysialic acid, PSA for the first time, onto a therapeutically valuable protein. This was achieved by protein engineering of the PSA carrier domain of NCAM onto single-chain Fv antibody fragments (one directed against noninternalizing carcinoembryonic antigen-CEA and one against internalizing human epidermal growth factor receptor-2-HER2). This created novel polysialylated antibody fragments with desired pharmacokinetics. Production was achieved in human embryonic kidney cells engineered to express human polysialyltransferase, and the recombinant, glycosylated product was successfully fractionated by ion-exchange chromatography. Polysialylation was verified by glycosidase digestion and mass spectrometry, which showed the correct glycan structures and PSA chain length similar to that of native NCAM. Binding was demonstrated by ELISA and surface plasmon resonance and on live cells by flow cytometry and confocal immunofluorescence. Unexpectedly, polysialylation inhibited receptor-mediated endocytosis of the anti-HER2 scFv. Recombinant polysialylation led to an estimated 3-fold increase in hydrodynamic radius, comparable to PEGylation, leading to an almost 30-fold increase in blood half-life and a similar increase in blood exposure. This increase in bioavailability led to a 12-fold increase in tumor uptake by 24 h. In summary, recombinant polysialylation of antibody fragments in our system is a novel and feasible approach applicable for pharmacokinetic modulation, and may have wider applications.


Asunto(s)
Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/uso terapéutico , Ácidos Siálicos/metabolismo , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/uso terapéutico , Animales , Antígeno CD56/química , Antígeno CD56/genética , Antígeno CD56/metabolismo , Femenino , Células HEK293 , Semivida , Humanos , Hidrodinámica , Ratones , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas , Receptor ErbB-2/inmunología , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacocinética , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/metabolismo
18.
Tumour Biol ; 33(3): 617-27, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22383295

RESUMEN

The ability of engineered antibodies to rapidly and selectively target tumors that express their target antigen makes them well suited for use as radioimaging tracers. The combination of molecular size and bivalent nature makes diabody molecules a particularly promising structure for use as radiotracers for diagnostic imaging. Previous data have demonstrated that the anti-HER2 C6.5 diabody (C6.5db) is an effective radiotracer in preclinical models of HER2-positive cancer. The aim of this study was to evaluate the impact on radiotracer performance, associated with expressing the C6.5db in the Pichia pastoris (P-C6.5db) system as compared to Escherichia coli (E. C6.5db). Glycosylation of P-C6.5db led to faster blood clearance and lower overall tumor uptake than seen with E. coli-produced C6.5db. However, P-C6.5db achieved high tumor/background ratios that are critical for effective imaging. Dosimetry measurements determined in this study for both (124)I-P-C6.5db and (124)I-E-C6.5db suggest that they are equivalent to other radiotracers currently being administered to patients.


Asunto(s)
Imagen Multimodal , Neoplasias Experimentales/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiofármacos , Receptor ErbB-2/inmunología , Anticuerpos de Cadena Única , Tomografía Computarizada por Rayos X , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Radioisótopos de Yodo/farmacocinética , Masculino , Ratones , Ratones SCID , Radiometría , Radiofármacos/metabolismo , Radiofármacos/farmacocinética , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacocinética , Factores de Tiempo , Trasplante Heterólogo , Levaduras/metabolismo
19.
J Pathol ; 223(4): 470-81, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21294121

RESUMEN

Worldwide, approximately 405 000 cases of oral cancer (OSCC) are diagnosed each year, with a rising incidence in many countries. Despite advances in surgery and radiotherapy, which remain the standard treatment options, the mortality rate has remained largely unchanged for decades, with a 5-year survival rate of around 50%. OSCC is a heterogeneous disease, staged currently using the TNM classification, supplemented with pathological information from the primary tumour and loco-regional lymph nodes. Although patients with advanced disease show reduced survival, there is no single pathological or molecular feature that identifies aggressive, early-stage tumours. We retrospectively analysed 282 OSCC patients for disease mortality, related to clinical, pathological, and molecular features based on our previous functional studies [EGFR, αvß6 integrin, smooth muscle actin (SMA), p53, p16, EP4]. We found that the strongest independent risk factor of early OSCC death was a feature of stroma rather than tumour cells. After adjusting for all factors, high stromal SMA expression, indicating myofibroblast transdifferentiation, produced the highest hazard ratio (3.06, 95% CI 1.65-5.66) and likelihood ratio (3.6; detection rate: false positive rate) of any feature examined, and was strongly associated with mortality, regardless of disease stage. Functional assays showed that OSCC cells can modulate myofibroblast transdifferentiation through αvß6-dependent TGF-ß1 activation and that myofibroblasts promote OSCC invasion. Finally, we developed a prognostic model using Cox regression with backward elimination; only SMA expression, metastasis, cohesion, and age were significant. This model was independently validated on a patient subset (detection rate 70%; false positive rate 20%; ROC analysis 77%, p < 0.001). Our study highlights the limited prognostic value of TNM staging and suggests that an SMA-positive, myofibroblastic stroma is the strongest predictor of OSCC mortality. Whether used independently or as part of a prognostic model, SMA identifies a significant group of patients with aggressive tumours, regardless of disease stage.


Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Células del Estroma/patología , Actinas/metabolismo , Anciano , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/secundario , Carcinoma de Células Escamosas/terapia , Métodos Epidemiológicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/terapia , Miofibroblastos/fisiología , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Estadificación de Neoplasias , Pronóstico , Células del Estroma/metabolismo
20.
Med Oncol ; 39(12): 205, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175701

RESUMEN

To discover new therapeutic antibodies for treatment of acute myeloid leukemia (AML) without the requirement of a known antigen, a human single-chain variable fragment (scFv) library was used to isolate novel antibody fragments recognizing HL-60 AML cells. After three rounds of biopanning, scFv-expressing phages were selected to test for binding to the target cell by flow cytometry. The clone with highest binding specificity to HL-60 cells (designated y1HL63D6) was further investigated. Fluorescent staining indicated that y1HL63D6 scFv bound to a target located on the cell surface. Whole immunoglobulin, IgG-y1HL63D6 was then generated and tested for the binding against bone marrow mononuclear cells (BMMCs) from AML patients. Significantly higher fluorescent signals were observed for some patient samples when compared to normal BMMCs or non-AML patients' BMMCs. Next, the IgG-y1HL63D6 format was tested for antibody-dependent cell cytotoxicity (ADCC). The results demonstrated that IgG-y1HL63D6 but not the control antibody, trastuzumab, could mediate specific killing of HL-60 target cells. In conclusion, our results indicate that specific antibodies can be isolated by biopanning whole cells with a non-immunized human scFv antibody phage display library and that the isolated antibody against HL-60 cells showed therapeutic potential.


Asunto(s)
Bacteriófagos , Anticuerpos de Cadena Única , Bioprospección , Humanos , Inmunoglobulina G , Células Mieloides , Anticuerpos de Cadena Única/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA