Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360941

RESUMEN

Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that help to understand their key role in life processes. Interest and importance of PL homeostasis is growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked to human diseases. We here review diseases that involve deregulation of PL homeostasis and present a predominantly muscular phenotype.


Asunto(s)
Músculo Estriado/metabolismo , Fosfolípidos/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Músculo Estriado/fisiología , Fosfolípidos/química
2.
Front Endocrinol (Lausanne) ; 14: 1130681, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152943

RESUMEN

In females, androgens contribute to ovarian diseases such as polycystic ovarian syndrome (PCOS), but their action is also crucial for ovarian physiology, i.e., follicular growth and estradiol (E2) synthesis during reproductive life, in interaction with the gonadotropins LH and FSH. However, it is unclear whether androgens already play a role in the ovary at mini-puberty, a phase of postnatal development with active follicular growth and high E2 levels. Therefore, we analyzed the potential actions of androgens on the ovary and their possible interaction with gonadotropins during this period in mice. We used molecular-based studies and pharmacological approaches in vivo and on cultured ovaries. We found that mini-pubertal ovaries produce significant amounts of testosterone and display androgen receptor (AR) expression in growing follicles, both under the control of LH. By blocking AR signaling either in vivo or in ovarian cultures, we found that this pathway may participate in the regulation of prepubertal E2 synthesis and follicular growth, possibly by regulating the expression of a number of key intra-ovarian regulators, including FSH receptor (Fshr), the aromatase enzyme converting androgens into estrogens (Cyp19a1) and the cell cycle inhibitor p27KIP1 (Cdkn1b). We further showed that AR may stimulate FSH-mediated regulation of Cyp19a1 through its action on Fshr mRNA abundance. Overall, this work supports the idea that AR signaling is already activated in mini-pubertal ovaries to regulate E2 synthesis and follicular growth, at the interplay with LH and FSH signaling. Its early action may, thus, contribute to the implementation of early ovarian function with possible impacts on reproductive function.


Asunto(s)
Andrógenos , Ovario , Receptores Androgénicos , Animales , Femenino , Ratones , Andrógenos/metabolismo , Hormona Folículo Estimulante/metabolismo , Gonadotropinas/metabolismo , Ovario/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Maduración Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA