Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39329260

RESUMEN

Recognition of antigens by T cell receptors (TCRs) is a key component of adaptive immunity. Understanding the structures of these TCR interactions provides major insights into immune protection and diseases, and enables design of therapeutics, vaccines and predictive modeling algorithms. Previously, we released TCR3d, a database and resource for structures of TCRs and their recognition. Due to the growth of available structures and categories of complexes, the content of TCR3d has expanded substantially in the past 5 years. This expansion includes new tables dedicated to TCR mimic antibody complex structures, TCR-CD3 complexes and annotated Class I and II peptide-MHC complexes. Additionally, tools are available for users to calculate docking geometries for input TCR and TCR mimic complex structures. The core tables of TCR-peptide-MHC complexes have grown by 50%, and include binding affinity data for experimentally determined structures. These major content and feature updates enhance TCR3d as a resource for immunology, therapeutics and structural biology research, and enable advanced approaches for predictive TCR modeling and design. TCR3d is available at: https://tcr3d.ibbr.umd.edu.

2.
PLoS Comput Biol ; 20(9): e1012489, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39348412

RESUMEN

Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optimization of existing ones designed for specific functions, such as binding a target protein. Despite the demonstrated potential of such approaches in designing general protein binders, their application in designing immunotherapeutics remains relatively underexplored. A relevant application is the design of T cell receptors (TCRs). Given the crucial role of T cells in mediating immune responses, redirecting these cells to tumor or infected target cells through the engineering of TCRs has shown promising results in treating diseases, especially cancer. However, the computational design of TCR interactions presents challenges for current physics-based methods, particularly due to the unique natural characteristics of these interfaces, such as low affinity and cross-reactivity. For this reason, in this study, we explored the potential of two structure-based deep learning protein design methods, ProteinMPNN and ESM-IF1, in designing fixed-backbone TCRs for binding target antigenic peptides presented by the MHC through different design scenarios. To evaluate TCR designs, we employed a comprehensive set of sequence- and structure-based metrics, highlighting the benefits of these methods in comparison to classical physics-based design methods and identifying deficiencies for improvement.


Asunto(s)
Biología Computacional , Aprendizaje Profundo , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/metabolismo , Biología Computacional/métodos , Humanos , Ingeniería de Proteínas/métodos , Modelos Moleculares , Conformación Proteica , Unión Proteica
3.
Nucleic Acids Res ; 51(W1): W569-W576, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37140040

RESUMEN

The cellular immune system, which is a critical component of human immunity, uses T cell receptors (TCRs) to recognize antigenic proteins in the form of peptides presented by major histocompatibility complex (MHC) proteins. Accurate definition of the structural basis of TCRs and their engagement of peptide-MHCs can provide major insights into normal and aberrant immunity, and can help guide the design of vaccines and immunotherapeutics. Given the limited amount of experimentally determined TCR-peptide-MHC structures and the vast amount of TCRs within each individual as well as antigenic targets, accurate computational modeling approaches are needed. Here, we report a major update to our web server, TCRmodel, which was originally developed to model unbound TCRs from sequence, to now model TCR-peptide-MHC complexes from sequence, utilizing several adaptations of AlphaFold. This method, named TCRmodel2, allows users to submit sequences through an easy-to-use interface and shows similar or greater accuracy than AlphaFold and other methods to model TCR-peptide-MHC complexes based on benchmarking. It can generate models of complexes in 15 minutes, and output models are provided with confidence scores and an integrated molecular viewer. TCRmodel2 is available at https://tcrmodel.ibbr.umd.edu.


Asunto(s)
Aprendizaje Profundo , Humanos , Receptores de Antígenos de Linfocitos T/química , Péptidos/química , Simulación por Computador , Antígenos
4.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826362

RESUMEN

T cell receptors (TCRs) that recognize cancer neoantigens are important for anti-cancer immune responses and immunotherapy. Understanding the structural basis of TCR recognition of neoantigens provides insights into their exquisite specificity and can enable design of optimized TCRs. We determined crystal structures of a human TCR in complex with NRAS Q61K and Q61R neoantigen peptides and HLA-A1 MHC, revealing the molecular underpinnings for dual recognition and specificity versus wild-type NRAS peptide. We then used multiple versions of AlphaFold to model the corresponding complex structures, given the challenge of immune recognition for such methods. Interestingly, one implementation of AlphaFold2 (TCRmodel2) was able to generate accurate models of the complexes, while AlphaFold3 also showed strong performance, although success was lower for other complexes. This study provides insights into TCR recognition of a shared cancer neoantigen, as well as the utility and practical considerations for using AlphaFold to model TCR-peptide-MHC complexes.

5.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712216

RESUMEN

Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optimization of existing ones designed for specific functions, such as binding a target protein. Despite the demonstrated potential of such approaches in designing general protein binders, their application in designing immunotherapeutics remains relatively unexplored. A relevant application is the design of T cell receptors (TCRs). Given the crucial role of T cells in mediating immune responses, redirecting these cells to tumor or infected target cells through the engineering of TCRs has shown promising results in treating diseases, especially cancer. However, the computational design of TCR interactions presents challenges for current physics-based methods, particularly due to the unique natural characteristics of these interfaces, such as low affinity and cross-reactivity. For this reason, in this study, we explored the potential of two structure-based deep learning protein design methods, ProteinMPNN and ESM-IF, in designing fixed-backbone TCRs for binding target antigenic peptides presented by the MHC through different design scenarios. To evaluate TCR designs, we employed a comprehensive set of sequence- and structure-based metrics, highlighting the benefits of these methods in comparison to classical physics-based design methods and identifying deficiencies for improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA