RESUMEN
Optical spectra broadening as a result self-phase modulation in a channel waveguide fabricated on a high quality tantalum pentoxide (Ta2O5) film by using RF sputtering is measured. The full-width at half maximum of the optical spectra for transverse electric (TE)/transverse magnetic (TM) polarizations of 42.5/31.7 nm is obtained using pulses of 10 nm at a wavelength of 800 nm with a peak-coupled power of 43.77 W. The nonlinear Kerr coefficients of 2.14 × 10-14 cm2/W and 1.92 × 10-14 cm2/W for TE and TM polarizations, respectively, are then extracted from the experiments using a theoretical model based on the method of moments. The obtained results on the nonlinearity further suggest that Ta2O5 is a promising material to develop nonlinear waveguide devices for integrated photonics.
RESUMEN
Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method.