Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem B ; 118(15): 4088-97, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24673507

RESUMEN

The yeast cyclin-dependent kinase inhibitor Sic1 is a disordered protein that, upon multisite phosphorylation, forms a dynamic complex with the Cdc4 subunit of an SCF ubiquitin ligase. To understand the multisite phosphorylation dependence of the Sic1:Cdc4 interaction, which ultimately leads to a sharp cell cycle transition, the conformational properties of the disordered Sic1 N-terminal targeting region were studied using single-molecule fluorescence spectroscopy. Multiple conformational populations with different sensitivities to charge screening were identified by performing experiments in nondenaturing salts and ionic denaturants. Both the end-to-end distance and the hydrodynamic radius decrease monotonically with increasing the salt concentration, and a rollover of the chain dimensions in high denaturant conditions is observed. The data were fit to the polyelectrolyte binding-screening model, yielding parameters such as the excluded volume of the uncharged chain and the binding constant to denaturant. An overall scaling factor of ∼1.2 was needed for fitting the data, which implies that Sic1 cannot be approximated by a random Gaussian chain. Fluorescence correlation spectroscopy reveals Sic1 structure fluctuations occurring on both fast (10-100 ns) and slow (∼10 ms) time scales, with the fast phase absent in low salt solutions. The results of this study provide direct evidence that long-range intrachain electrostatic repulsions are a significant factor for the conformational landscape of Sic1, and support the role of electrostatics in determining the overall shape and hydrodynamic properties of intrinsically disordered proteins.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/química , Hidrodinámica , Proteínas de Saccharomyces cerevisiae/química , Conformación Proteica , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA