Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mar Drugs ; 22(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38786602

RESUMEN

Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients.


Asunto(s)
Ciclooxigenasa 2 , Óxido Nítrico Sintasa de Tipo II , Osteoartritis , Polisacáridos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/inducido químicamente , Animales , Ciclooxigenasa 2/metabolismo , Polisacáridos/farmacología , Masculino , Ratones , Modelos Animales de Enfermedad , Ácido Yodoacético , Estrés Oxidativo/efectos de los fármacos , Humanos , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Yodoacetatos
2.
Ecotoxicol Environ Saf ; 271: 115978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38262097

RESUMEN

3-Monochloropropane-1, 2-diol (3-MCPD), a food-borne contaminant, is widely regarded as the primary cause of male infertility. At present, identifying a method to improve/reduce the male reproductive toxicity caused by 3-MCPD is important. In our study, we explored the potential application of resveratrol (RSV) in mitigating the adverse effects of 3-MCPD. Using 7-week-old Sprague-Dawley (SD) rats as animal models, we investigated the impacts and underlying mechanisms of 3-MCPD and RSV on reproductive function. The administration of 3-MCPD led to significant reductions in testicular and epididymal weights, as well as disruptions in spermatogenesis and histological abnormalities. However, co-treatment with RSV and 3-MCPD mitigated these adverse effects. In vitro study, RSV exhibited the ability to reverse the decline in Leydig and Sertoli cell populations inflicted by 3-MCPD treatment. Mechanistically, RSV reduced endoplasmic reticulum stress (PARP), inflammasome activation (NLRP3), and autophagy-mediated lysosome dysfunction (p62 and LC3BII) induced by 3-MCPD. In addition, 3-MCPD treatment increased the expression level of steroidogenesis-related proteins, steroidogenic acute regulatory (StAR) and CYP11A1, but RSV normalized StAR expression. Moreover, 3-MCPD-induced pro-inflammatory responses were counteracted by RSV treatment, with the cytokine reduction and modulation of CD206 expression, a marker of macrophage activation. These findings indicate that RSV attenuates 3-MCPD-induced reproductive toxicity, highlighting its application potential as an adjuvant agent for male reproductive health.


Asunto(s)
alfa-Clorhidrina , Ratas , Animales , Masculino , Ratas Sprague-Dawley , alfa-Clorhidrina/toxicidad , Resveratrol/farmacología , Testículo , Epidídimo
3.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612715

RESUMEN

Breast cancer (BC) represents one of the most prevalent malignant threats to women globally. Tumor relapse or metastasis is facilitated by BC stemness progression, contributing to tumorigenicity. Therefore, comprehending the characteristics of stemness progression and the underlying molecular mechanisms is pivotal for BC advancement. Hinokitiol (ß-thujaplicin), a tropolone-related compound abundant in the heartwood of cupressaceous plants, exhibits antimicrobial activity. In our study, we employed three BC cell lines (MDA-MB-231, MCF-7, and T47D) to assess the expression of stemness-, apoptosis-, and autophagy-related proteins. Hinokitiol significantly reduced the viability of cancer cells in a dose-dependent manner. Furthermore, we observed that hinokitiol enhances apoptosis by increasing the levels of cleaved poly-ADP-ribose polymerase (PARP) and phospho-p53. It also induces dysfunction in autophagy through the upregulation of LC3B and p62 protein expression. Additionally, hinokitiol significantly suppressed the number and diameter of cancer cell line spheres by reducing the expression of cluster of differentiation44 (CD44) and key transcription factors. These findings underscore hinokitiol's potential as a therapeutic agent for breast cancer, particularly as a stemness-progression inhibitor. Further research and clinical studies are warranted to explore the full therapeutic potential of hinokitiol in the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Monoterpenos , Tropolona , Tropolona/análogos & derivados , Humanos , Femenino , Tropolona/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Recurrencia Local de Neoplasia , Apoptosis , Autofagia , Células MCF-7 , Receptores de Hialuranos , Factores de Transcripción SOXB1
4.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807238

RESUMEN

The antitumor effects of Coix lacryma-jobi L. var. ma-yuen Stapf. (adlay seed) ethanolic extract have been increasingly shown. This study aimed to investigate the beneficial effects of both the fractions and subfractions of adlay seed ethanolic extract on the human breast (MCF-7) and cervical (HeLa) cancer cell lines, as well as exploring their possible mechanisms of action. The ethanolic extracts were obtained from different parts of adlay seed, including AHE (adlay hull extract), ATE (adlay testa extract), ABE (adlay bran extract) and PAE (polished adlay extract). The results of a 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl- tetrazolium bromide (MTT) assay showed that AHE-Ea and ATE-Ea showed significant growth inhibitory effects in a dose-dependent manner. The results also showed that the AHE-Ea-K, AHE-Ea-L, ATE-Ea-E and ATE-Ea-F subfractions inhibited cell proliferation, induced cell cycle arrest in the G0/G1 phase and decreased CDK4/Cyclin D1 protein expression. Finally, the extract activated caspase-3 activity and PARP protein expression, which induced MCF-7 and HeLa cell apoptosis. We then used liquid chromatography-mass spectrometry (LC/MS) to identify the potential active components., Quercetin showed an anticancer capacity. In conclusion, the AHE-Ea-K, AHE-Ea-L, ATE-Ea-E and ATE-Ea-F subfractions showed antitumor effects through the inhibition of MCF-7 and HeLa cell line viability, as well as inducing apoptosis and cell cycle arrest.


Asunto(s)
Coix , Neoplasias del Cuello Uterino , Apoptosis , Puntos de Control del Ciclo Celular , Coix/química , Etanol/farmacología , Femenino , Células HeLa , Humanos , Extractos Vegetales/química , Semillas/química , Neoplasias del Cuello Uterino/tratamiento farmacológico
5.
Mar Drugs ; 19(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073219

RESUMEN

Cardiovascular diseases such as atherosclerosis and aortic valve sclerosis involve inflammatory reactions triggered by various stimuli, causing increased oxidative stress. This increased oxidative stress causes damage to the heart cells, with subsequent cell apoptosis or calcification. Currently, heart valve damage or heart valve diseases are treated by drugs or surgery. Natural antioxidant products are being investigated in related research, such as fucoxanthin (Fx), which is a marine carotenoid extracted from seaweed, with strong antioxidant, anti-inflammatory, and anti-tumor properties. This study aimed to explore the protective effect of Fx on heart valves under high oxidative stress, as well as the underlying mechanism of action. Rat heart valve interstitial cells under H2O2-induced oxidative stress were treated with Fx. Fx improved cell survival and reduced oxidative stress-induced DNA damage, which was assessed by cell viability analysis and staining with propidium iodide. Alizarin Red-S analysis indicated that Fx has a protective effect against calcification. Furthermore, Western blotting revealed that Fx abrogates oxidative stress-induced apoptosis via reducing the expression of apoptosis-related proteins as well as modulate Akt/ERK-related protein expression. Notably, in vivo experiments using 26 dogs treated with 60 mg/kg of Fx in combination with medical treatment for 0.5 to 2 years showed significant recovery in their echocardiographic parameters. Collectively, these in vitro and in vivo results highlight the potential of Fx to protect heart valve cells from high oxidative stress-induced damage.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Cardiotónicos/farmacología , Válvulas Cardíacas/efectos de los fármacos , Xantófilas/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Perros , Válvulas Cardíacas/patología , Peróxido de Hidrógeno , Estrés Oxidativo/efectos de los fármacos , Ratas
6.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361036

RESUMEN

Hinokitiol is a natural tropolone derivative that is present in the heartwood of cupressaceous plants, and has been extensively investigated for its anti-inflammatory, antioxidant, and antitumor properties in the context of various diseases. To date, the effects of hinokitiol on endometrial cancer (EC) has not been explored. The purpose of our study was to investigate the anti-proliferative effects of hinokitiol on EC cells. Cell viability was determined with an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the quantification of apoptosis and reactive oxygen species (ROSs) was performed by using flow cytometry, while protein expression was measured with the Western blotting technique. Hinokitiol significantly suppressed cell proliferation through the inhibition of the expression of cell-cycle mediators, such as cyclin D1 and cyclin-dependent kinase 4 (CDK4), as well as the induction of the tumor suppressor protein p53. In addition, hinokitiol increased the number of apoptotic cells and increased the protein expression of cleaved-poly-ADP-ribose polymerase (PARP) and active cleaved-caspase-3, as well as the ratio of Bcl-2-associated X protein (Bax) to B-cell lymphoma 2 (Bcl-2). Interestingly, except for KLE cells, hinokitiol induced autophagy by promoting the accumulation of the microtubule-associated protein light chain 3B (LC3B) and reducing the sequestosome-1 (p62/SQSTM1) protein level. Furthermore, hinokitiol triggered ROS production and upregulated the phosphorylation of extracellular-signal-regulated kinase (p-ERK1/2) in EC cells. These results demonstrate that hinokitiol has potential anti-proliferative and pro-apoptotic benefits in the treatment of endometrial cancer cell lines (Ishikawa, HEC-1A, and KLE).


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Apoptosis , Puntos de Control del Ciclo Celular , Neoplasias Endometriales/metabolismo , Monoterpenos/toxicidad , Tropolona/análogos & derivados , Autofagia , Línea Celular Tumoral , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Femenino , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tropolona/toxicidad , Proteína p53 Supresora de Tumor/metabolismo
7.
J Pineal Res ; 68(1): e12620, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31710386

RESUMEN

The circadian nature of melatonin has a protective effect on the progression of female reproductive cancers, including breast and ovarian cancers. However, the effect of melatonin on the growth of uterine leiomyoma is still unclear. In this study, we found that the growth of uterine leiomyoma ELT3 cells was reduced by treatment with melatonin. Treatment with melatonin increased the distribution of sub-G1 phase and increased DNA condensation in ELT3 cells. Melatonin-induced apoptosis and autophagy cell death progression were observed in ELT3 cells. Melatonin exerts a highly selective effect on primary normal human uterine smooth muscle (UtSMC) cells. The UtSMC cell cycle was arrested by melatonin treatment through up-regulation of p21, p27, and PTEN protein expression, but melatonin did not further promote apoptosis program activation. Melatonin reduced cell proliferation in ELT3 cells underlying the activation of melatonin MT1 and MT2 receptors, which in turn down-regulated the Akt-ERK1/2-NFκB signaling pathway. Melatonin reduced ELT3 tumor growth in both xenograft and orthotopic uterine tumor mice models. The extracellular matrix of the tumor was also reduced by melatonin treatment. Taken together, these results suggest that melatonin potentially plays a role in suppression of uterine leiomyoma growth.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Leiomioma/metabolismo , Melatonina/farmacología , Neoplasias Uterinas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ratones , Ratas , Útero/citología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Molecules ; 25(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998236

RESUMEN

This study investigated the physicochemical characteristics of potato protein isolate hydrolysate (PPIH) and its antioxidant activity. Potato protein isolate (PPI) was hydrolyzed into PPIH by the proteases bromelain, Neutrase, and Flavourzyme. Compared with PPI, the resulting PPIH had a lower molecular weight (MW, from 103.5 to 422.7 Da) and smaller particle size (<50 nm), as well as a higher solubility rate (>70%) under acidic conditions (pH 3-6). PPIH presented good solubility (73%) across the tested pH range of 3-6. As the pH was increased, the zeta potential of PPIH decreased from -7.4 to -21.6. Using the 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical-scavenging assay, we determined that the half-maximal effective concentration (EC50) values of ascorbic acid, PPIH, and PPI were 0.01, 0.89, and >2.33 mg/mL, respectively. Furthermore, PPIH (50 µg/mL) protected C2C12 cells from H2O2 oxidation significantly better than PPI (10.5% higher viability rate; p < 0.01). These findings demonstrated the possible use of PPIH as an antioxidant in medical applications.


Asunto(s)
Antioxidantes/farmacología , Fenómenos Químicos , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Solanum tuberosum/química , Ácidos/química , Animales , Benzotiazoles/química , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Depuradores de Radicales Libres/química , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Ratones , Tamaño de la Partícula , Proteínas de Plantas/ultraestructura , Hidrolisados de Proteína/ultraestructura , Solubilidad , Electricidad Estática , Ácidos Sulfónicos/química
9.
Biomed Pharmacother ; 170: 116026, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128179

RESUMEN

Atopic dermatitis (AD) poses a significant global health challenge, characterized by dysregulated inflammation and apoptotic processes. This study explores the therapeutic efficacy of hinokitiol, employing a comprehensive in vivo and in vitro approach. Assessment of inflammation-related markers in the animal model included observation of physical appearance, Western blotting, ELISA, and H&E staining. Additionally, the cell culture model enabled the evaluation of apoptosis and ROS levels using MTT assay, crystal violet staining, Western blot, and DCFDA assays. The results revealed hinokitiol's proficiency in ameliorating ear and skin morphology in the DNCB-induced AD model, mediated through the TLR4/MyD88 pathway. Notably, hinokitiol intervention led to a reduction in both M1 and M2 macrophage phenotypes. In vitro investigations demonstrated hinokitiol's ability to enhance cell viability and morphology under TNF-α and IFN-γ induction. Mechanistically, hinokitiol exhibited regulatory effects on apoptosis-related proteins, including Bax, Cytochrome c, Caspase-3, and PARP, thereby averting cellular damage. These findings suggest that hinokitiol is a promising natural compound with significant potential for alleviating inflammation and apoptosis in AD, indicating potential avenues for future therapeutic developments.


Asunto(s)
Dermatitis Atópica , Animales , Ratones , Dermatitis Atópica/metabolismo , Receptor Toll-Like 4 , Piel , Inflamación/tratamiento farmacológico , Citocinas/metabolismo , Ratones Endogámicos BALB C
10.
J Cachexia Sarcopenia Muscle ; 14(1): 182-197, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36401337

RESUMEN

BACKGROUND: Cisplatin (CP) is a widely used chemotherapeutic drug with subsequent adverse effects on different organs and tissues including skeletal muscle loss and atrophy as the most common clinical symptoms. The molecular mechanism of cisplatin-induced muscle atrophy is not clearly understood. However, recent significant advances indicate that it is related to an imbalance in both the protein status and apoptosis. Capsaicin (CAP) is one of the major ingredients in chilli peppers. It is a valuable pharmacological agent with several therapeutic applications in controlling pain and inflammation with particular therapeutic potential in muscle atrophy. However, the mechanisms underlying its protective effects against cisplatin-induced muscle loss and atrophy remain largely unknown. This study aims to investigate capsaicin's beneficial effects on cisplatin-induced muscle loss and atrophy in vitro and in vivo. METHODS: The anti-muscle-atrophic effect of capsaicin on cisplatin-induced muscle loss was investigated using in vivo and in vitro studies. By using the pretreatment model, pretreated capsaicin for 24 h and treated with cisplatin for 48 h, we utilized a C2 C12 myotube formation model where cell viability analysis, immunofluorescence, and protein expression were measured to investigate the effect of capsaicin in hampering cisplatin-induced muscle atrophy. C57BL/6 mice were administered capsaicin (10, 40 mg/kg BW) as a pretreatment for 5 weeks and cisplatin (3 mg/kg BW) for seven consecutively days to assess muscle atrophy in an animal model for protein and oxidative stress examination, and the grip strength was tested to evaluate the muscle strength. RESULTS: Our study results indicated that cisplatin caused lower cell viability and showed a subset of hallmark signs typically recognized during atrophy, including severe reduction in the myotube diameter, repression of Akt, and mTOR protein expression. However, pretreatment with capsaicin could ameliorate cisplatin-induced muscle atrophy by up-regulating the protein synthesis in skeletal muscle as well as down-regulating the markers of protein degradation. Additionally, capsaicin was able to downregulate the protein expression of apoptosis-related markers, activated TRPV1 and autophagy progress modulation and the recovery of lysosome function. In vivo, capsaicin could relieve oxidative stress and cytokine secretion while modulating autophagy-related lysosome fusion, improving grip strength, and alleviating cisplatin-induced body weight loss and gastrocnemius atrophy. CONCLUSIONS: These findings suggest that capsaicin can restore cisplatin-induced imbalance between protein synthesis and protein degradation pathways and it may have protective effects against cisplatin-induced muscle atrophy.


Asunto(s)
Capsaicina , Cisplatino , Músculo Esquelético , Atrofia Muscular , Animales , Ratones , Capsaicina/farmacología , Capsaicina/uso terapéutico , Cisplatino/efectos adversos , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo
11.
Biomed Pharmacother ; 166: 115327, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37619480

RESUMEN

Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects women of reproductive age, characterized by androgen-induced oxidative stress leading to several metabolic disorders. In this study, we investigated the potential therapeutic effect of caffeic acid on PCOS and its underlying molecular mechanism. We used a human ovarian granulosa cell line (KGN cells) induced by hydrogen peroxide (H2O2) to examine how caffeic acid influences the protein expression of oxidative stress-induced apoptosis-related markers. Our results indicate that caffeic acid significantly inhibits intracellular reactive oxygen species (ROS) generation and safeguards KGN cells against oxidative stress. For the in vivo aspect of our study, female Sprague-Dawley (SD) rats were utilized to induce the PCOS model using dehydroepiandrosterone (DHEA). Caffeic acid was then administered to the rats for a duration of 6 weeks. The outcomes revealed that caffeic acid effectively improved irregular estrous cycles, fasting blood glucose levels, liver function, and lipid profiles in DHEA-induced PCOS rats. Additionally, it mitigated hyperandrogenism, enhanced steroidogenesis enzyme expression, and modulated apoptosis-related protein expression. Our findings strongly suggest that caffeic acid holds promising potential in reducing oxidative stress-induced damage and ameliorating PCOS-related complications by modulating ER stress.


Asunto(s)
Síndrome del Ovario Poliquístico , Femenino , Humanos , Animales , Ratas , Ratas Sprague-Dawley , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Peróxido de Hidrógeno , Apoptosis , Estrés Oxidativo , Deshidroepiandrosterona/farmacología
12.
Biomed Pharmacother ; 166: 115334, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37634475

RESUMEN

Asthma is a chronic inflammatory disease that has been associated with insufficient vegetable intake. Allyl Isothiocyanate (AITC) is a natural isothiocyanate found in cruciferous plants with anti-inflammatory and antioxidant abilities. Our study aimed to investigate the potential effect of AITC on tracheal constriction in a house dust mite (HDM)-induced asthma animal model, and explore the underlying mechanisms. To investigate the effects of AITC on HDM-induced allergic asthma model, established by intranasally administering extracts of HDM and AITC or DEX was given orally for four weeks. Flexivent SCIREQ, H&E staining, ELISA were employed to evaluate the lung function and the cytokine secretion. Possible mechanisms were determined by Western blot. Rat tracheae contraction was measured by Labscribe. We utilized lung epithelial cells (BEAS-2B) to assess the adhesion response to the combination of inflammatory factors TNF-α and IL-4. The results of the study showed that AITC significantly reduced tracheal constriction in ex vivo experiments and improved lung function in in vivo experiments compared to HDM-induced mice. Additionally, AITC decreased cytokine secretion, inflammatory cell infiltration in the lung, and constriction-related proteins expression in both lung and tracheae. Moreover, AITC increased tight junction-related protein expression in lung tissues. In vitro experiments showed that AITC had a protective effect through TRPA1 channel without affecting cell viability. Our results demonstrate that AITC has potential anti-asthma effects in HDM-induced asthma models by alleviating airway inflammation and airway constriction through increasing tight junction-related protein expression and suppressing Ca2+ signaling. These findings suggest that AITC may be a beneficial adjuvant therapy in asthma treatment.


Asunto(s)
Asma , Pyroglyphidae , Ratas , Animales , Ratones , Regulación hacia Arriba , Constricción , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Asma/tratamiento farmacológico , Constricción Patológica , Inflamación/tratamiento farmacológico
13.
Biomedicines ; 11(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36979677

RESUMEN

Hypoglycemia has been known as a potential contributory factor to neurodegenerative diseases, such as Alzheimer's disease. There may be shared pathogenic mechanisms underlying both conditions, and the ketone body, ß-hydroxybutyrate (BHB), as an alternative substrate for glucose may exert neuroprotection against hypoglycemia-induced injury. To investigate this, Neuro-2a cells were subjected to a 24 h period of glucose deprivation with or without the presence of BHB. Cell viability, reactive oxygen species (ROS) production, apoptosis, autophagy, and adenosine triphosphate (ATP) and beta-amyloid peptide (Aß) levels were evaluated. The results show that Neuro-2a cells deprived of glucose displayed a significant loss of cell survival with a corresponding decrease in ATP levels, suggesting that glucose deprivation was neurotoxic. This effect was likely attributed to the diverse mechanisms including raised ROS, defective autophagic flux and reduced basal Aß levels (particularly monomeric Aß). The presence of BHB could partially protect against the loss of cell survival induced by glucose deprivation. The mechanisms underlying the neuroprotective actions of BHB might be mediated, at least in part, through restoring ATP, and modulating ROS production, autophagy flux efficacy and the monomeric Aß level. Results imply that a possible link between the basal monomeric Aß and glucose deprivation neurotoxicity, and treatments designed for the prevention of energy impairment, such as BHB, may be beneficial for rescuing surviving cells in relation to neurodegeneration.

14.
Biomedicines ; 11(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36830834

RESUMEN

Obesity is a cancer progression risk factor; excessive adipocytes increase adipokine secretion. Visfatin, a novel adipokine highly expressed in cancer patients, is related to breast cancer risk. The modulation of nicotinamide adenine dinucleotide (NAD+) metabolism and the induction of a tumorigenic environment plays a vital role in cancer progression. Among cancer cell types, cancer stem-like cells (CSCs) with self-renewal and chemotherapy-resistance abilities could modulate tumor progression and cancer recurrence ability. In this study, we focused on visfatin's modulation effect on stemness-related properties using the high-malignancy breast cancer cell line MDA-MB-231 in in vitro and in vivo studies. Visfatin treatment significantly increased both the sphere number and sphere diameter and increased the protein expression of NANOG homeobox (NANOG), sex-determining region Y-box 2 (SOX2), and octamer-binding transcription factor 4 (OCT4), as well as SIRT1 protein levels. The serum angiogenesis marker VEGF and extracellular nicotinamide phosphoribosyl transferase (NAMPT, visfatin) were induced after visfatin treatment, increasing the stemness and angiogenesis environment, which were significantly reduced by the visfatin inhibitor FK866. Our results demonstrate that the visfatin-activated SIRT-SOX2 axis promotes triple-negative breast cancer stemness and enriches the tumorigenic microenvironment.

15.
Nutrients ; 15(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37447156

RESUMEN

Dysmenorrhea causes pain and inconvenience during menstruation. In addition to medication, natural compounds are widely used to relieve various types of pain. In this study, we aimed to assess the effects of vitamin D (vit. D) supplementation in relieving the symptoms of primary dysmenorrhea. A comprehensive systematic database search of randomized controlled trials (RCTs) was performed. Oral forms of vit. D supplementation were included and compared with a placebo or standard care. The degree of dysmenorrhea pain was measured with a visual analogue scale or numerical rating scale. Outcomes were compared using the standardized mean difference (SMD) and 95% confidence intervals (CIs) in a meta-analysis. RCTs were assessed using the Cochrane risk-of-bias v2 (RoB 2) tool. The meta-analysis included 8 randomized controlled trials involving 695 participants. The results of the quantitative analysis showed a significantly lower degree of pain in the vit. D versus placebo in those with dysmenorrhea (SMD: -1.404, 95% CI: -2.078 to -0.731). The results of subgroup analysis revealed that pain lessened when the average weekly dose of vit. D was over 50,000 IU, in which dysmenorrhea was relieved regardless of whether vit. D was administered for more or less than 70 days and in any dose interval. The results revealed that vit. D treatment substantially reduced the pain level in the primary dysmenorrhea population. We concluded that vit. D supplementation is an alternative treatment for relieving the pain symptoms of dysmenorrhea.


Asunto(s)
Dismenorrea , Menstruación , Femenino , Humanos , Dismenorrea/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Vitamina D , Suplementos Dietéticos
16.
Cells ; 12(8)2023 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-37190026

RESUMEN

Uterine fibroids (UFs) are the most important benign neoplastic threat to women's health worldwide, with a prevalence of up to 80% in premenopausal women, and can cause heavy menstrual bleeding, pain, and infertility. Progesterone signaling plays a crucial role in the development and growth of UFs. Progesterone promotes the proliferation of UF cells by activating several signaling pathways genetically and epigenetically. In this review article, we reviewed the literature covering progesterone signaling in UF pathogenesis and further discussed the therapeutic potential of compounds that modulate progesterone signaling against UFs, including selective progesterone receptor modulator (SPRM) drugs and natural compounds. Further studies are needed to confirm the safety of SPRMs as well as their exact molecular mechanisms. The consumption of natural compounds as a potential anti-UFs treatment seems promising, since these compounds can be used on a long-term basis-especially for women pursuing concurrent pregnancy, unlike SPRMs. However, further clinical trials are needed to confirm their effectiveness.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Embarazo , Femenino , Humanos , Progesterona/uso terapéutico , Neoplasias Uterinas/tratamiento farmacológico , Neoplasias Uterinas/patología , Receptores de Progesterona/metabolismo , Leiomioma/tratamiento farmacológico , Leiomioma/patología , Esteroides
17.
Biomed Pharmacother ; 167: 115533, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37748406

RESUMEN

Overexpression of the hypoxia-induced transmembrane enzyme carbonic anhydrase IX (CA9) has been associated with poor prognosis and chemoresistance in aggressive breast cancer. This study aimed to investigate the involvement of CA9 in the anti-tumor activity of para-toluenesulfonamide (PTS) and elucidate its mechanism of action against breast cancer both in vitro and in vivo. MCF-7 and MDA-MB-231 breast cancer cells were treated with PTS or subjected to hypoxic conditions using cobalt chloride (CoCl2), with acetazolamide serving as a positive control. Additionally, 4T1 breast cancer cell allograft mice were co-treated with PTS and α-programmed cell death 1 (αPD-1) monoclonal antibody for one month. The results demonstrated that PTS effectively reduced cell viability and reversed migration ability in MCF-7 and MDA-MB-231 cells under CoCl2-induced hypoxia. Furthermore, PTS upregulated the expression of apoptosis-related proteins and downregulated CA9, hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial growth factor (VEGF) proteins, possibly through modulation of p38 MAPK and ERK1/2 phosphorylated proteins. In the animal model, PTS100 inhibited tumor growth and lung metastasis in mammary tumor allograft mice, exhibiting synergistic effects when combined with αPD-1 therapy. Collectively, our findings suggest that PTS inhibits breast cancer growth and metastasis through the p38 MAPK/ERK1/2 pathway. Moreover, PTS may have the potential to prevent the development of resistance to αPD-1 therapy in breast cancer.


Asunto(s)
Neoplasias de la Mama , Anhidrasas Carbónicas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Femenino , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/farmacología , Supervivencia Celular , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antígenos de Neoplasias/metabolismo , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Hipoxia de la Célula , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama/patología
18.
Metabolites ; 12(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35736467

RESUMEN

Cancers represent a significant cause of morbidity and mortality worldwide. They also impose a large economic burden on patients, their families, and health insurance systems. Notably, cancers and the adverse reactions to their therapeutic options, chemotherapy and radiotherapy, dramatically affect the quality of life of afflicted patients. Therefore, developing approaches to manage chemotherapy- and radiotherapy-induced adverse reactions gained greater attention in recent years. Glycyrrhiza glabra (licorice), a perennial plant that is one of the most frequently used herbs in traditional Chinese medicine, has been heavily investigated in relation to cancer therapy. Licorice/licorice-related regimes, used in combination with chemotherapy, may improve the adverse effects of chemotherapy. However, there is little awareness of licorice-containing herbs alleviating reactions to radiotherapy and chemotherapy, or to other induced adverse reactions in cancer treatment. We aimed to provide a descriptive review, and to emphasize the possibility that licorice-related medicines could be used as an adjuvant regimen with chemotherapy to improve quality of life (QoL) and to reduce side effects, thus, improving compliance with chemotherapy. The experimental method involved searching different databases, including PubMed, the Cochrane Library, and Wang Fang database, as of May 2022, to identify any relevant studies. Despite a lack of high-quality and large-scale randomized controlled trials, we still discovered the potential benefits of licorice-containing herbs from published clinical studies. These studies find that licorice-containing herbs, and their active ingredients, reduce the adverse reactions caused by chemotherapy and radiotherapy, and improve the QoL of patients. This comprehensive review will serve as a cornerstone to encourage more scientists to evaluate and develop effective Traditional Chinese medicine prescriptions to improve the side effects of chemotherapy and radiation therapy.

19.
Expert Opin Pharmacother ; 23(4): 421-429, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35068291

RESUMEN

INTRODUCTION: Uterine Fibroids (UFs) are the most predominant benign tumor in women who are coming of reproductive age, and causes intense economic load priced in billions of US dollars. Historically, surgery has been the main definitive treatment, albeit less attractive nowadays, especially for women with future fertility plans. Therefore, studies to explore the pharmacological treatment options are increasing especially as those that are currently available are limited for short-term use only. AREAS COVERED: This drug evaluation features the clinical results from previous and ongoing studies of relugolix, in combination with the add back therapy of estradiol (E2) and norethindrone acetate (NETA), as a novel, orally administered, nonpeptide antagonist of gonadotropin-releasing hormone (GnRH) for the management of heavy menstrual bleeding (HMB) in premenopausal women with UFs. EXPERT OPINION: The combination of relugolix/E2/NETA is an encouraging, well-tolerated and noninvasive pharmacological option for UFs patients. Relugolix induced a concentration-dependent decrease in HMB. However, it should be used with hormonal add-back therapy (E2+ NETA) to avoid induced hypoestrogenic side effects, importantly bone mineral density loss. Moreover, symptoms will likely resume shortly after the termination of the relugolix combination administration.


Asunto(s)
Leiomioma , Menorragia , Neoplasias Uterinas , Estradiol/uso terapéutico , Femenino , Hormona Liberadora de Gonadotropina , Humanos , Leiomioma/complicaciones , Leiomioma/tratamiento farmacológico , Menorragia/tratamiento farmacológico , Acetato de Noretindrona , Compuestos de Fenilurea , Pirimidinonas , Neoplasias Uterinas/tratamiento farmacológico
20.
Mol Nutr Food Res ; 66(20): e2200298, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35986687

RESUMEN

SCOPE: The consumption of artificial sweeteners has been rapidly increasing, with potentially hazardous effects on human reproduction. This study aims to explore the effect of Acesulfame Potassium (Ace K) and its potential mechanism to induce uterine contraction through in vitro, ex vivo, in vivo, and clinical observation studies. METHODS AND RESULTS: Used ex vivo and in vitro studies to analyze its effect on uterine contraction and involved signaling pathway. Used the long-term, high-dose exposure to examine Ace K's affection for contractive-related protein expression. By involving a cohort of 613 participants, to assess the dose-responsiveness of Ace K consumption and calculate the odd ratio of Ace K consumption and the relationship with preterm risk. Animal studies show increasing uterine contraction, cytokine secretion, and altered contraction-related protein expression. Human data show that higher consumption of Ace K may be related to early delivery. CONCLUSION: Long-term high-dose exposure to Ace K can induce uterine hypercontraction, increase cytokine secretion, and alters contraction-related protein expression. These findings suggest that women who suffer from uterine hypercontraction causes painfulness should pay more attention to the zero- or low-calorie soft drinks or food products containing Ace K.


Asunto(s)
Edulcorantes , Contracción Uterina , Humanos , Embarazo , Animales , Recién Nacido , Femenino , Edulcorantes/efectos adversos , Calcio/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Transducción de Señal , Calcio de la Dieta , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA