Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nitric Oxide ; 143: 1-8, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096948

RESUMEN

6-Nitrodopamine (6-ND) is released from rat and human vas deferens and is considered a major mediator of both tissues contractility. The contractions induced by 6-ND are selectively blocked by both tricyclic antidepressants and α1-adrenoceptor antagonists. Endothelial nitric oxide synthase (eNOS) is the major isoform responsible for 6-ND release in mouse isolated heart, however the origin of 6-ND in the vas deferens is unknown. Here it was investigated by LC-MS/MS the basal release of 6-ND from isolated vas deferens obtained from control, eNOS-/-, nNOS-/-, and iNOS-/- mice. In addition, it was evaluated in vitro vas deferens contractility following electric field stimulation (EFS). Basal release of 6-ND was significantly reduced in nNOS-/- mice compared to control mice, but not decreased when the vas deferens were obtained from either eNOS-/- or iNOS-/- mice. Pre-incubation of the vas deferens with tetrodotoxin (1 µM) significantly reduced the basal release of 6-ND from control, eNOS-/-, and iNOS-/- mice but had no effect on the basal release of 6-ND from nNOS-/- mice. EFS-induced frequency-dependent contractions of the vas deferens, which were significantly reduced when the tissues obtained from control, eNOS-/- and iNOS-/- mice, were pre-incubated with l-NAME, but unaltered when the vas deferens was obtained from nNOS-/- mice. In addition, the EFS-induced contractions were significantly smaller when the vas deferens were obtained from nNOS-/- mice. The results clearly demonstrate that nNOS is the main NO isoform responsible for 6-ND release in mouse vas deferens and reinforces the concept of 6-ND as a major modulator of vas deferens contractility.


Asunto(s)
Dopamina , Norepinefrina , Conducto Deferente , Animales , Humanos , Masculino , Ratones , Ratas , Cromatografía Liquida , Dopamina/análogos & derivados , Contracción Muscular , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo I , Norepinefrina/farmacología , Espectrometría de Masas en Tándem , Conducto Deferente/fisiología
2.
Nitric Oxide ; 138-139: 26-33, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37269938

RESUMEN

6-nitrodopamine (6-ND) is released from rat isolated atria, where it acts as a potent positive chronotropic agent. The release of 6-ND from rat isolated atria and ventricles is significantly reduced when pre-incubated with l-NAME, and the release was not affected by tetrodotoxin pre-treatment, indicating that in the heart, the origin of 6-ND is not neurogenic. Since l-NAME inhibits all three isoforms of NO synthase, it was investigated the basal release of 6-ND from isolated atria and ventricles from nNOS-/-, iNOS-/- and eNOS-/- mice of either sex. The release of 6-ND was measured by LC-MS/MS. There were no significant differences in the 6-ND basal release from isolated atria and ventricles from male control mice, as compared to female control mice. The 6-ND release from atria obtained from eNOS-/- mice was significantly reduced when compared to atria obtained from control mice. The 6-ND release in nNOS-/- mice was not significantly different compared to control animals whereas the 6-ND release from atria obtained from iNOS-/- mice was significantly higher when compared to control group. Incubation of the isolated atria with l-NAME caused a significant decrease in the basal atrial rate of control, nNOS-/-, and iNOS-/- mice, but not in eNOS-/- mice. The results clearly indicate that eNOS is the isoform responsible for the synthesis of 6-ND in the mice isolated atria and ventricles and supports the concept that 6-ND is the major mechanism by which endogenous NO modulates heart rate.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Espectrometría de Masas en Tándem , Ratones , Ratas , Masculino , Femenino , Animales , NG-Nitroarginina Metil Éster/farmacología , Cromatografía Liquida , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo
3.
BMC Neurosci ; 23(1): 32, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641906

RESUMEN

BACKGROUND: Fragile X syndrome, the major cause of inherited intellectual disability among men, is due to deficiency of the synaptic functional regulator FMR1 protein (FMRP), encoded by the FMRP translational regulator 1 (FMR1) gene. FMR1 alternative splicing produces distinct transcripts that may consequently impact FMRP functional roles. In transcripts without exon 14 the translational reading frame is shifted. For deepening current knowledge of the differential expression of Fmr1 exon 14 along the rat nervous system development, we conducted a descriptive study employing quantitative RT-PCR and BLAST of RNA-Seq datasets. RESULTS: We observed in the rat forebrain progressive decline of total Fmr1 mRNA from E11 to P112 albeit an elevation on P3; and exon-14 skipping in E17-E20 with downregulation of the resulting mRNA. We tested if the reduced detection of messages without exon 14 could be explained by nonsense-mediated mRNA decay (NMD) vulnerability, but knocking down UPF1, a major component of this pathway, did not increase their quantities. Conversely, it significantly decreased FMR1 mRNA having exon 13 joined with either exon 14 or exon 15 site A. CONCLUSIONS: The forebrain in the third embryonic week of the rat development is a period with significant skipping of Fmr1 exon 14. This alternative splicing event chronologically precedes a reduction of total Fmr1 mRNA, suggesting that it may be part of combinatorial mechanisms downregulating the gene's expression in the late embryonic period. The decay of FMR1 mRNA without exon 14 should be mediated by a pathway different from NMD. Finally, we provide evidence of FMR1 mRNA stabilization by UPF1, likely depending on FMRP.


Asunto(s)
Empalme Alternativo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Prosencéfalo , Empalme Alternativo/genética , Animales , Desarrollo Embrionario , Exones/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Prosencéfalo/embriología , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Ratas , Transactivadores/genética , Transactivadores/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 310(1): R15-23, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26538239

RESUMEN

iSodium intake occurs either as a spontaneous or induced behavior, which is enhanced, i.e., sensitized, by repeated episodes of water deprivation followed by subsequent partial rehydration (WD-PR). In the present work, we examined whether repeated WD-PR alters hypothalamic transcripts related to the brain renin-angiotensin system (RAS) and apelin system in male normotensive Holtzman rats (HTZ). We also examined whether the sodium intake of a strain with genetically inherited high expression of the brain RAS, the spontaneously hypertensive rat (SHR), responds differently than HTZ to repeated WD-PR. We found that repeated WD-PR, besides enhancing spontaneous and induced 0.3 M NaCl intake, increased the hypothalamic expression of angiotensinogen, aminopeptidase N, and apelin receptor transcripts (43%, 60%, and 159%, respectively) in HTZ at the end of the third WD-PR. Repeated WD-PR did not change the daily spontaneous 0.3 M NaCl intake and barely changed the need-induced 0.3 M NaCl intake of SHR. The same treatment consistently enhanced spontaneous daily 0.3 M NaCl intake in the normotensive Wistar-Kyoto rats. The results show that repeated WD-PR produces alterations in hypothalamic transcripts and also sensitizes sodium appetite in HTZ. They suggest an association between the components of hypothalamic RAS and the apelin system, with neural and behavioral plasticity produced by repeated episodes of WD-PR in a normotensive strain. The results also indicate that the inherited hyperactive brain RAS is not a guarantee for sensitization of sodium intake in the male adult SHR exposed to repeated WD-PR.


Asunto(s)
Regulación del Apetito , Conducta Animal , Fluidoterapia , Hipertensión/metabolismo , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , ARN Mensajero/metabolismo , Sistema Renina-Angiotensina , Cloruro de Sodio Dietético/administración & dosificación , Privación de Agua , Animales , Apelina , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hipertensión/genética , Hipertensión/fisiopatología , Hipertensión/psicología , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Plasticidad Neuronal , ARN Mensajero/genética , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Sprague-Dawley , Sistema Renina-Angiotensina/genética , Factores de Tiempo
5.
Proc Natl Acad Sci U S A ; 107(9): 4442-7, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20147620

RESUMEN

Morphine is one of the most prescribed and effective drugs used for the treatment of acute and chronic pain conditions. In addition to its central effects, morphine can also produce peripheral analgesia. However, the mechanisms underlying this peripheral action of morphine have not yet been fully elucidated. Here, we show that the peripheral antinociceptive effect of morphine is lost in neuronal nitric-oxide synthase null mice and that morphine induces the production of nitric oxide in primary nociceptive neurons. The activation of the nitric-oxide pathway by morphine was dependent on an initial stimulation of PI3Kgamma/AKT protein kinase B (AKT) and culminated in increased activation of K(ATP) channels. In the latter, this intracellular signaling pathway might cause a hyperpolarization of nociceptive neurons, and it is fundamental for the direct blockade of inflammatory pain by morphine. This understanding offers new targets for analgesic drug development.


Asunto(s)
Canales KATP/metabolismo , Morfina/uso terapéutico , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/uso terapéutico , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/administración & dosificación , Dolor/tratamiento farmacológico , Dolor/enzimología , Dolor/metabolismo , Ratas , Ratas Wistar
6.
Cureus ; 15(5): e38897, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37309350

RESUMEN

Serotonin syndrome (SS) is a potentially fatal adverse drug reaction characterized by an exaggerated increase in serotonergic activity in the central and peripheral nervous systems. It presents a constellation of signs and symptoms related to behavioral changes, neuromuscular excitability, and autonomic instability. These symptoms can occur in both mild and severe forms. SS can be triggered by the therapeutic use of a drug that increases serotonin (5-HT) availability in the synaptic cleft or by the co-administration of two or more drugs that provide this increase. With the escalating use of antidepressants by the world's population, this adverse reaction may be more recurrent. However, SS is often overlooked by patients or not diagnosed by doctors. This review aims to improve awareness about SS and provide a pharmacological perspective to explain its occurrence. Evidence shows that other neurotransmitters may also be involved with the pathology of SS. Furthermore, SS and neuroleptic malignant syndrome (NMS) seem to be part of the same pathological spectrum, especially in atypical NMS cases. The emergence of the syndrome's symptoms may be closely related to pharmacokinetic and/or pharmacodynamic polymorphisms that lead to an increase in the 5-HT available to or 5-HT signaling by specific receptors, thus constituting an important area for future investigations.

7.
Sci Rep ; 12(1): 21015, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36470912

RESUMEN

Important functions of the prefrontal cortex (PFC) are established during early life, when neurons exhibit enhanced synaptic plasticity and synaptogenesis. This developmental stage drives the organization of cortical connectivity, responsible for establishing behavioral patterns. Serotonin (5-HT) emerges among the most significant factors that modulate brain activity during postnatal development. In the PFC, activated 5-HT receptors modify neuronal excitability and interact with intracellular signaling involved in synaptic modifications, thus suggesting that 5-HT might participate in early postnatal plasticity. To test this hypothesis, we employed intracellular electrophysiological recordings of PFC layer 5 neurons to study the modulatory effects of 5-HT on plasticity induced by theta-burst stimulation (TBS) in two postnatal periods of rats. Our results indicate that 5-HT is essential for TBS to result in synaptic changes during the third postnatal week, but not later. TBS coupled with 5-HT2A or 5-HT1A and 5-HT7 receptors stimulation leads to long-term depression (LTD). On the other hand, TBS and synergic activation of 5-HT1A, 5-HT2A, and 5-HT7 receptors lead to long-term potentiation (LTP). Finally, we also show that 5-HT dependent synaptic plasticity of the PFC is impaired in animals that are exposed to early-life chronic stress.


Asunto(s)
Plasticidad Neuronal , Corteza Prefrontal , Serotonina , Animales , Ratas , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Ritmo Teta
8.
Life Sci ; 285: 119939, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34506836

RESUMEN

AIMS: Nitric oxide synthases (NOSs) are key enzymes regulating vascular function. Previously, we reported that ß-adrenergic (ß-AR) overstimulation, a common feature of cardiovascular diseases, did not impair endothelium-dependent vasodilation, although it resulted in endothelial NOS (eNOS) uncoupling and reduced NO bioavailability. In addition to NO, neuronal NOS (nNOS) produces H2O2, which contributes to vasodilation. However, there is limited information regarding vascular ß-AR signaling and nNOS. In the present study, we assessed the possible role of nNOS-derived H2O2 and caveolins on endothelial vasodilation function following ß-AR overstimulation. MAIN METHODS: Male C57BL/6 wild-type and nNOS knockout mice (nNOS-/-) were treated with the ß-AR agonist isoproterenol (ISO, 15 mg·kg-1·day-1, s.c.) or vehicle (VHE) for seven days. Relaxation responses of aortic rings were evaluated using wire myograph and H2O2 by Amplex Red. KEY FINDINGS: Acetylcholine- or calcium ionophore A23187-induced endothelium-dependent relaxation was similar in aortic rings from VHE and ISO. However, this relaxation was significantly reduced in aortas from ISO compared to VHE when (1) caveolae were disrupted, (2) nNOS was pharmacologically inhibited or genetically suppressed and (3) H2O2 was scavenged. NOS-derived H2O2 production was higher in the aortas of ISO mice than in those of VHE mice. Aortas from ISO-treated mice showed increased expression of caveolin-1, nNOS and catalase, while caveolin-3 expression did not change. SIGNIFICANCE: The results suggest a role of caveolin-1 and the nNOS/H2O2 vasodilatory pathway in endothelium-dependent relaxation following ß-AR overstimulation and reinforce the protective role of nNOS in cardiovascular diseases associated with high adrenergic tone.


Asunto(s)
Caveolina 1/fisiología , Óxido Nítrico Sintasa de Tipo I/fisiología , Receptores Adrenérgicos alfa/metabolismo , Vasodilatación/fisiología , Agonistas Adrenérgicos beta/farmacología , Animales , Calcimicina/farmacología , Ionóforos de Calcio/farmacología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/fisiopatología , Caveolina 1/genética , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Peróxido de Hidrógeno/metabolismo , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo I/genética , Vasodilatación/efectos de los fármacos , Vasodilatación/genética
9.
Neurobiol Stress ; 12: 100221, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32435670

RESUMEN

Psychosocial stress is the major form of stress faced by children and adolescents and is an important risk factor for the development of mental illnesses. Chronic social defeat stress (CSDS) is a preclinical mouse model that induces an entire spectrum of phenotypes with similar interindividual variability as seen in humans. Following CSDS, adult male mice have been characterized as being either susceptible or resilient to emotional stress on the basis of their social interactions, which was reported to be highly correlated with sucrose preference (SP) when measured after the last defeat episode. We studied adolescent male C57BL/6 mice (30 days old) for susceptibility and resilience to social avoidance, anhedonia and anxiety-like behaviors, body weight change and basal blood corticosterone concentrations after 10 days of CSDS. Defeated adolescents showed reduced SP, reduced social interaction time (with an unknown adolescent male from their same strain), reduced weight gain and higher basal blood corticosterone concentration when compared to nondefeated mice. Only a small proportion of defeated adolescents were either totally susceptible (20%) or totally resilient (30%) in both the SP and social avoidance tests. The remaining defeated mice had a distinct behavioral impairment - susceptible in one test and resilient in the other. Surprisingly, behaviorally resilient defeated adolescents were the most affected population in terms of both endocrine/physiological outcomes. These findings illustrate that, contrary to prior assumptions in adults, the CSDS responses are more complex and singular in adolescents, and caution should be taken for the correct interpretation of those phenotypes. We propose a better characterization of social defeat stress responses as a critical step to advance our understanding of the mechanisms behind stress resilience that translate to human experience.

10.
Mol Autism ; 10: 19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31011411

RESUMEN

Background: Autism spectrum disorders (ASD) affect around 1.5% of people worldwide. Symptoms start around age 2, when children fail to maintain eye contact and to develop speech and other forms of communication. Disturbances in glutamatergic and GABAergic signaling that lead to synaptic changes and alter the balance between excitation and inhibition in the developing brain are consistently found in ASD. One of the hallmarks of these disorders is hypersensitivity to sensory stimuli; however, little is known about its underlying causes. Since the retina is the part of the CNS that converts light into a neuronal signal, we set out to study how it is affected in adolescent mice prenatally exposed to valproic acid (VPA), a useful tool to study ASD endophenotypes. Methods: Pregnant female mice received VPA (600 mg/kg, ip) or saline at gestational day 11. Their male adolescent pups (P29-35) were behaviorally tested for anxiety and social interaction. Proteins known to be related with ASD were quantified and visualized in their retinas by immunoassays, and retinal function was assessed by full-field scotopic electroretinograms (ERGs). Results: Early adolescent mice prenatally exposed to VPA displayed impaired social interest and increased anxiety-like behaviors consistent with an ASD phenotype. The expression of GABA, GAD, synapsin-1, and FMRP proteins were reduced in their retinas, while mGluR5 was increased. The a-wave amplitudes of VPA-exposed were smaller than those of CTR animals, whereas the b-wave and oscillatory potentials were normal. Conclusions: This study establishes that adolescent male mice of the VPA-induced ASD model have alterations in retinal function and protein expression compatible with those found in several brain areas of other autism models. These results support the view that synaptic disturbances with excitatory/inhibitory imbalance early in life are associated with ASD and point to the retina as a window to understand their subjacent mechanisms.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Retina/metabolismo , Potenciales de Acción , Animales , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/metabolismo , Endofenotipos , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Retina/fisiopatología , Conducta Social , Sinapsinas/genética , Sinapsinas/metabolismo , Ácido Valproico/toxicidad
11.
Neurosci Biobehav Rev ; 30(3): 346-55, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16483891

RESUMEN

Male mice with targeted deletion of the genes encoding the neuronal (NOS-1-/- or nNOS-/-) isoform of nitric oxide synthase display altered aggressive behaviors. Male nNOS-1-/- mice are more aggressive than wild-type (WT) mice in all testing paradigms. Testosterone is necessary, but not sufficient, for evoking the persistent aggression, and that serotonin (5-HT) metabolism is altered in male nNOS-1-/- mice. The specific deletion of the nNOS-1 gene not only results in a lack of nNOS-1 protein, but in common with many genes, affects several 'down-stream' processes. In this review, we address whether the elevated aggression in male nNOS-1-/- mice reflects pleiotropic effects of the nNOS-1 gene on pain sensitivity, 'anxiety-like', or 'depressive-like' behaviors. For example, male nNOS-1-/- mice display increased sensitivity to painful stimuli, which may prolong aggressive interactions. Despite elevated corticosterone concentrations, nNOS-1 knockout mice appear to be less 'anxious' or fearful than WT mice. Male nNOS-1-/- mice display longer latencies to right themselves on an inverted platform and spend more time in the center of an open field than WT mice. Because of reduced serotonin turnover, the excessive aggressiveness displayed by nNOS-1-/- mice may be symptomatic of a depressive-like syndrome. However, nNOS-1-/- mice rarely display behavioral 'despair' when assessed with the Porsolt forced swim test; rather, nNOS-1-/- mice show vigorous swimming throughout the assessment suggesting that the aggressive behavior does not represent depressive-like behavior. Importantly, aggressive behavior is not a unitary process, but is the result of complex interactions among several physiological, motivational, and behavioral systems, with contributions from the social as well as the physical environment. Lastly, the multiple, and often unanticipated, effects of targeted gene disruption on aggressive behavior are considered.


Asunto(s)
Agresión/fisiología , Óxido Nítrico/fisiología , Animales , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/fisiología , Serotonina/fisiología
12.
Endocrinology ; 147(11): 5385-99, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16916951

RESUMEN

The enzyme phosphatidylinositol 3-kinase (PI3-kinase) exerts an important role in the transduction of the anorexigenic and thermogenic signals delivered by insulin and leptin to first-order neurons of the arcuate nucleus in the hypothalamus. The termination of the intracellular signals generated by the activation of PI3-kinase depends on the coordinated activity of specific inositol phosphatases. Here we show that phosphoinositide-specific inositol polyphosphate 5-phosphatase IV (5ptase IV) is highly expressed in neurons of the arcuate and lateral nuclei of the hypothalamus. Upon intracerebroventricular (ICV) treatment with insulin, 5ptase IV undergoes a time-dependent tyrosine phosphorylation, which follows the same patterns of canonical insulin signaling through the insulin receptor, insulin receptor substrate-2, and PI3-kinase. To evaluate the participation of 5ptase IV in insulin action in hypothalamus, we used a phosphorthioate-modified antisense oligonucleotide specific for this enzyme. The treatment of rats with this oligonucleotide for 4 d reduced the hypothalamic expression of 5ptase IV by approximately 80%. This was accompanied by an approximately 70% reduction of insulin-induced tyrosine phosphorylation of 5ptase IV and an increase in basal accumulation of phosphorylated inositols in the hypothalamus. Finally, inhibition of hypothalamic 5ptase IV expression by the antisense approach resulted in reduced daily food intake and body weight loss. Thus, 5ptase IV is a powerful regulator of signaling through PI3-kinase in hypothalamus and may become an interesting target for therapeutics of obesity and related disorders.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Hipotálamo/enzimología , Monoéster Fosfórico Hidrolasas/fisiología , Secuencia de Aminoácidos , Animales , Fármacos Antiobesidad/farmacología , Secuencia de Bases , Inhibidores Enzimáticos/farmacología , Inositol Polifosfato 5-Fosfatasas , Insulina/farmacología , Masculino , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/fisiología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Fosforilación , Ratas , Transducción de Señal , Tirosina/metabolismo
13.
FEBS Lett ; 580(19): 4625-31, 2006 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-16876161

RESUMEN

TNF-alpha acts on the hypothalamus modulating food intake and energy expenditure through mechanisms incompletely elucidated. Here, we explore the hypothesis that, to modulate insulin-induced anorexigenic signaling in hypothalamus, TNF-alpha requires the synthesis of NO. TNF-alpha activates signal transduction through JNK and p38 in hypothalamus, peaking at 10(-8) M. This is accompanied by the induction of expression of the inducible and neuronal forms of NOS, in both cases peaking at 10(-12) M. In addition, TNF-alpha stimulates NOS catalytic activity. Pre-treatment with TNF-alpha at a low dose (10(-12) M) inhibits insulin-dependent anorexigenic signaling, and this effect is abolished in iNOS but not in nNOS knockout mice.


Asunto(s)
Conducta Alimentaria/fisiología , Hipotálamo/efectos de los fármacos , Insulina/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Relación Dosis-Respuesta a Droga , Hipotálamo/fisiología , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/administración & dosificación
14.
Behav Brain Res ; 292: 370-80, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26142783

RESUMEN

Individual differences are important biological predictors for reactivity to stressful stimulation. The extent to which trait differences underlie animal's reactions to conditioned and unconditioned fear stimuli, for example, is still to be clarified. Although grooming behavior has been associated with some aspects of the obsessive-compulsive disorder in humans, its relation with other anxiety disorders is still unknown. Given that grooming behavior could be a component of the whole spectrum of these disorders, in the present study we allocated male Wistar rats in low, intermediate and high self-grooming groups according to the duration of such behavior in the elevated plus-maze (EPM). These groups were then evaluated in unconditioned fear tests, such as the EPM and the open-field, and in conditioned fear tests, such as fear-potentiated startle and fear extinction retention. Additionally, we studied the expression of unconditioned behaviors in marble burying test and the sensorimotor gate function with prepulse inhibition test. Neurochemicals and neuroendocrine parameters were also evaluated, with the quantification of basal corticosterone in the plasma, and dopamine, serotonin and their metabolites in brain structures involved with fear processing. In general, rats classified according to grooming expression showed similar performance in all behavioral tests. Accordingly, corticosterone and monoamine concentrations were similar among groups. Thus, despite grooming expression elicited by different approaches--especially pharmacological ones--has been related with some aspects of anxiety disorders, rats with different expression of spontaneous self-grooming in the EPM do not differ in anxiety-like behaviors nor in neurochemical and neuroendocrine parameters generally associated with anxiety disorders.


Asunto(s)
Ansiedad , Aseo Animal , Individualidad , Animales , Conducta Compulsiva , Condicionamiento Clásico , Miedo , Masculino , Ratas , Ratas Wistar
15.
J Neuroimmunol ; 140(1-2): 41-8, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12864970

RESUMEN

Nitric oxide (NO) is implicated in inflammation and hypothalamic-pituitary responses to immune stimuli; however, the specific role of NO from neurons during stress-induced immune responses remains unspecified. We measured antigen-specific delayed-type-hypersensitivity (DTH) responses in the skin of wild-type (WT) and neuronal nitric oxide synthase knockout (nNOS(-/-)) mice at baseline and after 2 h of restraint. Baseline corticosterone concentrations were higher in nNOS(-/-) than WT mice. However, stress-induced increases in corticosterone were dampened in nNOS(-/-) mice, and restraint suppressed DTH only in WT animals. Furthermore, WT mice lost more body mass after stress, and exhibited more anxiety-like behavior in the open field, than nNOS(-/-) mice. Neuronal NO appears to be involved in the neuroendocrine-immune response to stress, perhaps via glucocorticoid regulation.


Asunto(s)
Hipersensibilidad Tardía/enzimología , Hipersensibilidad Tardía/genética , Neuronas/enzimología , Óxido Nítrico Sintasa/deficiencia , Óxido Nítrico Sintasa/genética , Estrés Fisiológico/enzimología , Estrés Fisiológico/genética , Animales , Conducta Animal , Índice de Masa Corporal , Corticosterona/sangre , Hipersensibilidad Tardía/prevención & control , Terapia de Inmunosupresión , Isoenzimas/deficiencia , Isoenzimas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/inmunología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/inmunología , Óxido Nítrico Sintasa/fisiología , Óxido Nítrico Sintasa de Tipo I , Restricción Física , Estrés Fisiológico/inmunología
16.
Brain Behav ; 2(4): 365-76, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22950040

RESUMEN

Maternal care is essential in mammals, and variations in the environment provided by mothers may directly influence the viability of newborns and emotional behavior later in life. A previous study investigated genetic variations associated with maternal care in an intercross of LG/J and SM/J inbred mouse strains and identified two single-locus QTLs (quantitative trait loci). Here, we selected three candidate genes located within these QTLs intervals; Oxt on chromosome 2, and FosB and Peg3 on chromosome 7 and tested their association with maternal care. LG/J females showed impaired postpartum nest building and pup retrieval, a one-day delay in milk ejection, reduced exploratory activity, and higher anxiety-like behavior when compared to SM/J females. The nucleotide sequences of Oxt and FosB were similar between strains, as were their hypothalamic expression levels. Conversely, Peg3 nucleotide sequences showed four nonsynonymous replacement substitutions on LG/J dams, T11062G, G13744A, A13808G, and G13813A, and a 30 base pair (10 aa) in tandem repeat in the coding region with three copies in SM/J and five copies in LG/J. Maternal care impaired LG/J mothers express 37% lower Peg3 mRNA levels in the hypothalamus on the second postpartum day. We also found an association of the Peg3 repeat-variant and poor maternal care in F(2) heterozygote females derived from a LG/J × SM/J intercross. These results may suggest that the maternally imprinted Peg3 gene is responsible for the single-locus QTL on chromosome 7 that has been shown to influence maternal care in these strains. Furthermore, these data provide additional support for an epigenetic regulation of maternal behavior.

17.
Pharmacol Biochem Behav ; 102(2): 224-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22579910

RESUMEN

Previous studies have suggested that γ-aminobutyric acid-B (GABA(B)) receptor agonists effectively reduce ethanol intake. The quantification using real-time polymerase chain reaction of Gabbr1 and Gabbr2 mRNA from the prefrontal cortex, hypothalamus, hippocampus, and striatum in mice exposed to an animal model of the addiction developed in our laboratory was performed to evaluate the involvement of the GABA(B) receptor in ethanol consumption. We used outbred, Swiss mice exposed to a three-bottle free-choice model (water, 5% v/v ethanol, and 10% v/v ethanol) that consisted of four phases: acquisition (AC), withdrawal (W), reexposure (RE), and quinine-adulteration (AD). Based on individual ethanol intake, the mice were classified into three groups: "addicted" (A group; preference for ethanol and persistent consumption during all phases), "heavy" (H group; preference for ethanol and a reduction in ethanol intake in the AD phase compared to AC phase), and "light" (L group; preference for water during all phases). In the prefrontal cortex in the A group, we found high Gabbr1 and Gabbr2 transcription levels, with significantly higher Gabbr1 transcription levels compared with the C (ethanol-naive control mice), L, and H groups. In the hippocampus in the A group, Gabbr2 mRNA levels were significantly lower compared with the C, L, and H groups. In the striatum, we found a significant increase in Gabbr1 transcription levels compared with the C, L, and H groups. No differences in Gabbr1 or Gabbr2 transcription levels were observed in the hypothalamus among groups. In summary, Gabbr1 and Gabbr2 transcription levels were altered in cerebral areas related to drug taking only in mice behaviorally classified as "addicted" drinkers, suggesting that these genes may contribute to high and persistent ethanol consumption.


Asunto(s)
Etanol/administración & dosificación , Receptores de GABA-B/fisiología , Transcripción Genética , Animales , Secuencia de Bases , Cartilla de ADN , Conducta de Ingestión de Líquido , Etanol/sangre , Perfilación de la Expresión Génica , Masculino , Ratones , Modelos Animales , ARN/genética , Receptores de GABA-B/genética
18.
Front Syst Neurosci ; 5: 40, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21713068

RESUMEN

Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (l-DOPA)-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of l-DOPA-induced abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA)-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment. The primary findings of this study were that NG-nitro-l-Arginine, an inhibitor of endothelial and neuronal nitric oxide synthase, attenuated AIMs induced by chronic and acute l-DOPA. In contrast, rotational behavior was attenuated only after chronic l-DOPA. The 6-OHDA lesion and the l-DOPA treatment induced a bilateral increase (1.5 times) in the neuronal nitric oxide synthase (nNOS) protein and nNOS mRNA in the striatum and in the frontal cortex. There was a parallel increase, bilaterally, of the FosB/ΔFosB, primarily in the ipsilateral striatum. The exception was in the contralateral striatum and the ipsilateral frontal cortex, where chronic l-DOPA treatment induced an increase of approximately 10 times the nNOS mRNA. Our results provided further evidence of an anti-dyskinetic effect of NOS inhibitor. The effect appeared under l-DOPA acute and chronic treatment. The l-DOPA treatment also revealed an over-expression of the neuronal NOS in the frontal cortex and striatum. Our results corroborated findings that l-DOPA-induced rotation differs between acute and chronic treatment. The effect of the NOS inhibitor conceivably relied on the l-DOPA structural modifications in the Parkinsonian brain. Taken together, these data provided a rationale for further evaluation of NOS inhibitors in the treatment of l-DOPA-induced dyskinesia.

19.
Clinics (Sao Paulo) ; 65(1): 85-92, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20126350

RESUMEN

BACKGROUND: Spontaneously hypertensive rats develop left ventricular hypertrophy, increased blood pressure and blood pressure variability, which are important determinants of heart damage, like the activation of renin-angiotensin system. AIMS: To investigate the effects of the time-course of hypertension over 1) hemodynamic and autonomic patterns (blood pressure; blood pressure variability; heart rate); 2) left ventricular hypertrophy; and 3) local and systemic Renin-angiotensin system of the spontaneously hypertensive rats. METHODS: MALE SPONTANEOUSLY HYPERTENSIVE RATS WERE RANDOMIZED INTO TWO GROUPS: young (n=13) and adult (n=12). Hemodynamic signals (blood pressure, heart rate), blood pressure variability (BPV) and spectral analysis of the autonomic components of blood pressure were analyzed. LEFT ventricular hypertrophy was measured by the ratio of LV mass to body weight (mg/g), by myocyte diameter (mum) and by relative fibrosis area (RFA, %). ACE and ACE2 activities were measured by fluorometry (UF/min), and plasma renin activity (PRA) was assessed by a radioimmunoassay (ng/mL/h). Cardiac gene expressions of Agt, Ace and Ace2 were quantified by RT-PCR (AU). RESULTS: The time-course of hypertension in spontaneously hypertensive rats increased BPV and reduced the alpha index in adult spontaneously hypertensive rats. Adult rats showed increases in left ventricular hypertrophy and in RFA. Compared to young spontaneously hypertensive rats, adult spontaneously hypertensive rats had lower cardiac ACE and ACE2 activities, and high levels of PRA. No change was observed in gene expression of Renin-angiotensin system components. CONCLUSIONS: The observed autonomic dysfunction and modulation of Renin-angiotensin system activity are contributing factors to end-organ damage in hypertension and could be interacting. Our findings suggest that the management of hypertensive disease must start before blood pressure reaches the highest stable levels and the consequent established end-organ damage is reached.


Asunto(s)
Presión Sanguínea/fisiología , Hemodinámica/fisiología , Hipertensión , Hipertrofia Ventricular Izquierda , Sistema Renina-Angiotensina/fisiología , Factores de Edad , Enzima Convertidora de Angiotensina 2 , Angiotensinógeno/genética , Animales , Modelos Animales de Enfermedad , Hipertensión/patología , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Peptidil-Dipeptidasa A/genética , Distribución Aleatoria , Ratas , Ratas Endogámicas SHR
20.
Nutr Metab Cardiovasc Dis ; 16(2): 148-55, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16487915

RESUMEN

OBJECTIVE: To get some additional insight on the mechanisms of the effect of salt intake on body weight. DESIGN AND METHODS: Rats were fed a low (LSD), normal (NSD), or high (HSD) salt diet. In a first set, body weight, tail-cuff blood pressure, fasting plasma thyroid-stimulating hormone, triiodothyronine, L-thyroxine, glucose, insulin, and angiotensin II were measured. Angiotensin II content was determined in white and brown adipose tissues. Uncoupling protein 1 expression was measured in brown adipose tissue. In a second set, body weight, food intake, energy balance, and plasma leptin were determined. In a third set of rats, motor activity and body weight were evaluated. RESULTS: Blood pressure increased on HSD. Body weight was similar among groups at weaning, but during adulthood it was lower on HSD and higher on LSD. Food intake, L-thyroxine concentration, uncoupling protein 1 expression and energy expenditure were higher in HSD rats, while non-fasting leptin concentration was lower in these groups compared to NSD and LSD animals. Plasma thyroid-stimulating hormone decreased on both HSD and LSD while plasma glucose and insulin were elevated only on LSD. A decrease in plasma angiotensin II was observed in HSD rats. On LSD, an increase in brown adipose tissue angiotensin II content was associated to decreased uncoupling protein 1 expression and energy expenditure. In this group, a low angiotensin II content in white adipose tissue was also found. Motor activity was not influenced by the dietary salt content. CONCLUSIONS: Chronic alteration in salt intake is associated with changes in body weight, food intake, hormonal profile, and energy expenditure and tissue angiotensin II content.


Asunto(s)
Peso Corporal/efectos de los fármacos , Dieta Hiposódica , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Energía/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Cloruro de Sodio Dietético/administración & dosificación , Tejido Adiposo Pardo/metabolismo , Angiotensina II/metabolismo , Animales , Peso Corporal/fisiología , Proteínas Portadoras/metabolismo , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/fisiología , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Hipertensión/dietoterapia , Canales Iónicos , Masculino , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ratas , Ratas Wistar , Hormonas Tiroideas/sangre , Factores de Tiempo , Proteína Desacopladora 1 , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA