Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 70(2): 1192-1202, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31769750

RESUMEN

A novel aerobic moderately thermophilic bacterium, strain 3753OT, was isolated from a Chukotka hot spring (Arctic, Russia) using the newly developed technology of laser engineering of microbial systems. Сells were regular short rods, 0.4×0.8-2.0 µm in size, with a monoderm-type envelope and a single flagellum. The temperature and pH ranges for growth were 42-60 °C and pH 6.5-8.5, the optima being 50-54 °C and pH 7.3. Strain 3753OT grew chemoorganoheterotrophically on a number of carbohydrates or peptidic substrates and volatile fatty acids, and chemolithoautotrophically with siderite (FeCO3) as the electron donor. The major cellular fatty acid was branched C19 : 0. Phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids as well as two yellow carotenoid-type pigments were detected in the polar lipid extract. Strain 3753OT was inhibited by chloramphenicol, polymyxin B, vancomycin, streptomycin, neomycin and kanamycin, but resistant to the action of novobiocin and ampicillin. The DNA G+C content was 69.9 mol%. The 16S rRNA gene as well as 51 conservative protein sequence-based phylogenetic analyses placed strain 3753OT within the previously uncultivated lineage OLB14 in the phylum Chloroflexi. Taking into account the phylogenetic position as well as phenotypic properties of the novel isolate, the novel genus and species Tepidiforma bonchosmolovskayae gen. nov., sp. nov., within the Tepidiformaceae fam. nov., the Tepidiformales ord. nov. and the Tepidiformia classis nov. are proposed. The type strain of Tepidiforma bonchosmolovskayae is 3753OT (=VKM B-3389T=KTCT 72284T).


Asunto(s)
Chloroflexi/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Regiones Árticas , Técnicas de Tipificación Bacteriana , Composición de Base , Carotenoides/química , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Federación de Rusia , Análisis de Secuencia de ADN
2.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182746

RESUMEN

Cytocompatibility is essential for implant approval. However, initial in vitro screenings mainly include the quantity of adherent immortalized cells and cytotoxicity. Other vital parameters, such as cell migration and an in-depth understanding of the interaction between native tissue cells and implant surfaces, are rarely considered. We investigated different laser-fabricated spike structures using primary and immortalized cell lines of fibroblasts and osteoblasts and included quantification of the cell area, aspect ratio, and focal adhesions. Furthermore, we examined the three-dimensional cell interactions with spike topographies and developed a tailored migration assay for long-term monitoring on opaque materials. While fibroblasts and osteoblasts on small spikes retained their normal morphology, cells on medium and large spikes sank into the structures, affecting the composition of the cytoskeleton and thereby changing cell shape. Up to 14 days, migration appeared stronger on small spikes, probably as a consequence of adequate focal adhesion formation and an intact cytoskeleton, whereas human primary cells revealed differences in comparison to immortalized cell lines. The use of primary cells, analysis of the cell-implant structure interaction as well as cell migration might strengthen the evaluation of cytocompatibility and thereby improve the validity regarding the putative in vivo performance of implant material.


Asunto(s)
Adhesión Celular/fisiología , Movimiento Celular/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Osteoblastos/citología , Osteoblastos/fisiología , Células 3T3 , Animales , Materiales Biocompatibles , Forma de la Célula/fisiología , Células Cultivadas , Citoesqueleto/fisiología , Adhesiones Focales/fisiología , Humanos , Imagenología Tridimensional , Rayos Láser , Ensayo de Materiales , Ratones , Microscopía Electrónica de Rastreo , Células 3T3 NIH , Propiedades de Superficie , Titanio
3.
Opt Express ; 27(18): 25119-25125, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31510390

RESUMEN

High-resolution, high-speed 3D printing by two-photon polymerization (2PP) with a Nd:YVO4 Q-switched microchip laser at its fundamental wavelength of 1064 nm is demonstrated. Polymerization scan speeds of up to 20 mm/s and feature sizes of 250 nm are achieved using a high repetition rate Q-switched microchip laser with a semiconductor saturable absorber mirror (SESAM) and photoresist with a new photo-initiator bearing 6-dialkylaminobenzufuran as electron donor and indene-1,3-dione moiety as electron acceptor. The obtained results demonstrate the high potential of Q-switched microchip lasers for applications in 2PP 3D printing.

4.
Opt Express ; 26(4): 4698-4709, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475317

RESUMEN

We propose a method for designing multifocal diffractive lenses generating prescribed sets of foci with fixed positions at several different wavelengths. The method is based on minimizing the difference between the complex amplitudes of the beams generated by the lens microrelief at the design wavelengths, and the functions of the complex transmission of multifocal lenses calculated for these wavelengths. As an example, a zone plate generating three fixed foci at three different wavelengths was designed, fabricated, and experimentally investigated. The proof-of-concept experimental results confirm the formation of foci with fixed positions at the design wavelengths. The obtained results may find applications in the design and fabrication of novel multifocal contact and intraocular lenses with reduced chromatic effects.

5.
Nano Lett ; 17(11): 7152-7159, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29058440

RESUMEN

Anapole states associated with the resonant suppression of electric-dipole scattering exhibit minimized extinction and maximized storage of electromagnetic energy inside a particle. Using numerical simulations, optical extinction spectroscopy, and amplitude-phase near-field mapping of silicon dielectric disks, we demonstrate high-order anapole states in the near-infrared wavelength range (900-1700 nm). We develop the procedure for unambiguously identifying anapole states by monitoring the normal component of the electric near-field and experimentally detect the first two anapole states as verified by far-field extinction spectroscopy and confirmed with the numerical simulations. We demonstrate that higher-order anapole states possess stronger energy concentration and narrower resonances, a remarkable feature that is advantageous for their applications in metasurfaces and nanophotonics components, such as nonlinear higher-harmonic generators and nanoscale lasers.

6.
Nano Lett ; 17(5): 3047-3053, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28409641

RESUMEN

Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.

7.
Biomed Microdevices ; 19(4): 78, 2017 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-28844120

RESUMEN

Within this paper we analyzed the technical feasibility of a novel microstent for glaucoma therapy. For lowering of intraocular pressure, the flexible polyurethane (PUR) implant is designed to drain aqueous humour from the anterior chamber of the eye into subconjunctival, or alternatively suprachoroidal, space. The microstent includes a biodegradable, flow resisting polymer membrane serving as temporary flow resistance for the prevention of early postoperative hypotony. A biodegradable local drug delivery (LDD)-device was designed to prevent fibrous encapsulation. Biodegradable components were made of flexible, nonwoven membranes of Poly(4-hydroxybutyrate) (P(4HB)). Polymer samples and microstent prototypes were manufactured by means of dip coating, electrospinning and femtosecond-laser micromachining and characterized in vitro with regard to structural and fluid mechanical properties, degradation behavior and drug release. Bending stiffness of PUR-tubing (62.53 ± 7.57 mN mm2) is comparable to conventional glaucoma drainage devices in a tube-plate design. Microstent prototypes yield a flow resistance of 2.4 ± 0.6 mmHg/µl min-1 which is close to the aspired value corresponding to physiological pressure (15 mmHg) and aqueous humour flow (2 µl min-1) conditions inside the eye. Degradation of electrospun P(4HB) specimens was found to be almost completely finished after six months in vitro. Within this time frame, flow capacity of the microstent increases, which is beneficial to compensate potentially increasing flow resistance of fibrous tissue in vivo. Fast drug release of the LDD-device was found. One microstent prototype was implanted into a porcine eye ex vivo. Future preclinical studies will allow further information about Microstent performance.


Asunto(s)
Implantes Absorbibles , Implantes de Medicamentos , Glaucoma/terapia , Ensayo de Materiales , Poliésteres , Stents , Animales , Implantes de Medicamentos/química , Implantes de Medicamentos/farmacología , Glaucoma/metabolismo , Glaucoma/fisiopatología , Humanos , Poliésteres/química , Poliésteres/farmacología , Porcinos
8.
Opt Express ; 23(25): 31755-65, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26698967

RESUMEN

In this paper, we present a plasmonic model system for the realization of ultrafast all-optical NOT, AND, OR, and XOR gate operations using linear interference effects in dielectric crossed waveguide structures. The waveguides for the surface plasmon-polaritons are produced by a simple but highly accurate microscopic lithographic process and are optimized for single mode operation at an excitation laser wavelength of 800 nm. The functionality of the presented structures is demonstrated using sub-30 fs laser pulses from a mode locked titanium:sapphire laser. Using leakage radiation microscopy we show ultrafast SPP switching and logic operations of one basic structure consisting of two crossed waveguides with an additional output waveguide along the bisecting line of the input waveguides. The individual gates are realized on a footprint of 10 µm × 20 µm. Experimental investigations are supported by finite-difference time-domain simulations, where good agreement between experimental results and numerical simulations is obtained. To exploit the high precision of the fabrication method and its huge potential for realizing functional complex plasmonic circuitry we experimentally demonstrate a half-adder structure and its operation by combining and cascading several plasmonic waveguide components and logic gate elements on an area of only 10 µm × 28 µm.

9.
Nano Lett ; 14(5): 2431-5, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24702430

RESUMEN

In this work, the mutual coupling and coherent interaction of propagating and localized surface plasmons within a model-type plasmonic assembly is experimentally demonstrated, imaged, and analyzed. Using interferometric time-resolved photoemission electron microscopy the interplay between ultrashort surface plasmon polariton wave packets and plasmonic nanoantennas is monitored on subfemtosecond time scales. The data reveal real-time insights into dispersion and localization of electromagnetic fields as governed by the elementary modes determining the functionality of plasmonic operation units.

10.
Biomacromolecules ; 15(2): 650-9, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24432740

RESUMEN

Hydrogels are able to mimic the basic three-dimensional (3D) biological, chemical, and mechanical properties of native tissues. Since hyaluronic acid (HA) is a chief component of human extracellular matrix (ECM), it represents an extremely attractive starting material for the fabrication of scaffolds for tissue engineering. Due to poor mechanical properties of hydrogels, structure fabrication of this material class remains a major challenge. Two-photon polymerization (2PP) is a promising technique for biomedical applications, which allows the fabrication of complex 3D microstructures by moving the laser focus in the volume of a photosensitive material. Chemical modification of hyaluronan allows application of the 2PP technique to this natural material and, thus, precise fabrication of 3D hydrogel constructs. To create materials with tailor-made mechanochemical properties, HA was combined and covalently cross-linked with poly(ethylene glycol) diacrylate (PEGDA) in situ. 2PP was applied for the fabrication of well elaborated 3D HA and HA-PEGDA microstructures. For enhanced biological adaption, HA was functionalized with human epidermal growth factor.


Asunto(s)
Factor de Crecimiento Epidérmico/química , Ácido Hialurónico/química , Protones , Andamios del Tejido/química , Línea Celular , Proliferación Celular , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Fibroblastos/química , Fibroblastos/citología , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Tamaño de la Partícula , Polietilenglicoles/química , Polimerizacion , Reología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA