Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1061-1083, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38723632

RESUMEN

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/genética , Transcriptoma , Factores de Riesgo , Genómica/métodos , Estudios de Casos y Controles , Multiómica
2.
Nature ; 521(7553): 489-94, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26017449

RESUMEN

Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Genoma Humano/genética , Neoplasias Ováricas/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Estudios de Cohortes , Ciclina E/genética , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Metilación de ADN , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Femenino , Genes BRCA1 , Genes BRCA2 , Genes de Neurofibromatosis 1 , Mutación de Línea Germinal/genética , Humanos , Mutagénesis/genética , Proteínas Oncogénicas/genética , Neoplasias Ováricas/tratamiento farmacológico , Fosfohidrolasa PTEN/genética , Regiones Promotoras Genéticas/genética , Proteína de Retinoblastoma/genética
3.
Gynecol Oncol ; 156(3): 552-560, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31902686

RESUMEN

OBJECTIVE: Mucinous ovarian carcinoma (MOC) is an uncommon ovarian cancer histotype that responds poorly to conventional chemotherapy regimens. Although long overall survival outcomes can occur with early detection and optimal surgical resection, recurrent and advanced disease are associated with extremely poor survival. There are no current guidelines specifically for the systemic management of recurrent MOC. We analyzed data from a large cohort of women with MOC to evaluate the potential for clinical utility from a range of systemic agents. METHODS: We analyzed gene copy number (n = 191) and DNA sequencing data (n = 184) from primary MOC to evaluate signatures of mismatch repair deficiency and homologous recombination deficiency, and other genetic events. Immunohistochemistry data were collated for ER, CK7, CK20, CDX2, HER2, PAX8 and p16 (n = 117-166). RESULTS: Molecular aberrations noted in MOC that suggest a match with current targeted therapies include amplification of ERBB2 (26.7%) and BRAF mutation (9%). Observed genetic events that suggest potential efficacy for agents currently in clinical trials include: KRAS/NRAS mutations (66%), TP53 missense mutation (49%), RNF43 mutation (11%), ARID1A mutation (10%), and PIK3CA/PTEN mutation (9%). Therapies exploiting homologous recombination deficiency (HRD) may not be effective in MOC, as only 1/191 had a high HRD score. Mismatch repair deficiency was similarly rare (1/184). CONCLUSIONS: Although genetically diverse, MOC has several potential therapeutic targets. Importantly, the lack of response to platinum-based therapy observed clinically corresponds to the lack of a genomic signature associated with HRD, and MOC are thus also unlikely to respond to PARP inhibition.


Asunto(s)
Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/terapia , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patología , Anciano , Estudios de Cohortes , Reparación de la Incompatibilidad de ADN , Femenino , Recombinación Homóloga , Humanos , Inmunohistoquímica , Mutación , Estadificación de Neoplasias , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Receptor ErbB-2/genética , Receptor ErbB-3/genética
5.
Cancer Epidemiol Biomarkers Prev ; 31(1): 132-141, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34697060

RESUMEN

BACKGROUND: Ovarian clear cell carcinoma (OCCC) is a rare ovarian cancer histotype that tends to be resistant to standard platinum-based chemotherapeutics. We sought to better understand the role of DNA methylation in clinical and biological subclassification of OCCC. METHODS: We interrogated genome-wide methylation using DNA from fresh frozen tumors from 271 cases, applied nonsmooth nonnegative matrix factorization (nsNMF) clustering, and evaluated clinical associations and biological pathways. RESULTS: Two approximately equally sized clusters that associated with several clinical features were identified. Compared with Cluster 2 (N = 137), Cluster 1 cases (N = 134) presented at a more advanced stage, were less likely to be of Asian ancestry, and tended to have poorer outcomes including macroscopic residual disease following primary debulking surgery (P < 0.10). Subset analyses of targeted tumor sequencing and IHC data revealed that Cluster 1 tumors showed TP53 mutation and abnormal p53 expression, and Cluster 2 tumors showed aneuploidy and ARID1A/PIK3CA mutation (P < 0.05). Cluster-defining CpGs included 1,388 CpGs residing within 200 bp of the transcription start sites of 977 genes; 38% of these genes (N = 369 genes) were differentially expressed across cluster in transcriptomic subset analysis (P < 10-4). Differentially expressed genes were enriched for six immune-related pathways, including IFNα and IFNγ responses (P < 10-6). CONCLUSIONS: DNA methylation clusters in OCCC correlate with disease features and gene expression patterns among immune pathways. IMPACT: This work serves as a foundation for integrative analyses that better understand the complex biology of OCCC in an effort to improve potential for development of targeted therapeutics.


Asunto(s)
Adenocarcinoma de Células Claras/genética , Metilación de ADN , Neoplasias Ováricas/genética , Adenocarcinoma de Células Claras/etnología , Adenocarcinoma de Células Claras/patología , Adulto , Anciano , Anciano de 80 o más Años , Aneuploidia , Fosfatidilinositol 3-Quinasa Clase I/genética , Islas de CpG/genética , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Mutación , Estadificación de Neoplasias , Neoplasias Ováricas/etnología , Neoplasias Ováricas/patología , Pronóstico , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética
6.
Clin Cancer Res ; 28(22): 4947-4956, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-35816189

RESUMEN

PURPOSE: To identify molecular subclasses of clear cell ovarian carcinoma (CCOC) and assess their impact on clinical presentation and outcomes. EXPERIMENTAL DESIGN: We profiled 421 primary CCOCs that passed quality control using a targeted deep sequencing panel of 163 putative CCOC driver genes and whole transcriptome sequencing of 211 of these tumors. Molecularly defined subgroups were identified and tested for association with clinical characteristics and overall survival. RESULTS: We detected a putative somatic driver mutation in at least one candidate gene in 95% (401/421) of CCOC tumors including ARID1A (in 49% of tumors), PIK3CA (49%), TERT (20%), and TP53 (16%). Clustering of cancer driver mutations and RNA expression converged upon two distinct subclasses of CCOC. The first was dominated by ARID1A-mutated tumors with enriched expression of canonical CCOC genes and markers of platinum resistance; the second was largely comprised of tumors with TP53 mutations and enriched for the expression of genes involved in extracellular matrix organization and mesenchymal differentiation. Compared with the ARID1A-mutated group, women with TP53-mutated tumors were more likely to have advanced-stage disease, no antecedent history of endometriosis, and poorer survival, driven by their advanced stage at presentation. In women with ARID1A-mutated tumors, there was a trend toward a lower rate of response to first-line platinum-based therapy. CONCLUSIONS: Our study suggests that CCOC consists of two distinct molecular subclasses with distinct clinical presentation and outcomes, with potential relevance to both traditional and experimental therapy responsiveness. See related commentary by Lheureux, p. 4838.


Asunto(s)
Adenocarcinoma de Células Claras , Endometriosis , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Adenocarcinoma de Células Claras/tratamiento farmacológico , Adenocarcinoma de Células Claras/genética , Mutación , Endometriosis/genética , Endometriosis/patología
7.
Eur J Hum Genet ; 30(3): 349-362, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027648

RESUMEN

Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Teorema de Bayes , Carcinoma Epitelial de Ovario/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/genética , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Factores de Riesgo
8.
Nat Genet ; 54(12): 1853-1864, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456881

RESUMEN

Fewer than half of all patients with advanced-stage high-grade serous ovarian cancers (HGSCs) survive more than five years after diagnosis, but those who have an exceptionally long survival could provide insights into tumor biology and therapeutic approaches. We analyzed 60 patients with advanced-stage HGSC who survived more than 10 years after diagnosis using whole-genome sequencing, transcriptome and methylome profiling of their primary tumor samples, comparing this data to 66 short- or moderate-term survivors. Tumors of long-term survivors were more likely to have multiple alterations in genes associated with DNA repair and more frequent somatic variants resulting in an increased predicted neoantigen load. Patients clustered into survival groups based on genomic and immune cell signatures, including three subsets of patients with BRCA1 alterations with distinctly different outcomes. Specific combinations of germline and somatic gene alterations, tumor cell phenotypes and differential immune responses appear to contribute to long-term survival in HGSC.


Asunto(s)
Genómica , Neoplasias Ováricas , Femenino , Humanos , Sobrevivientes , Neoplasias Ováricas/genética
9.
Clin Cancer Res ; 15(4): 1417-27, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19193619

RESUMEN

PURPOSE: A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. EXPERIMENTAL DESIGN: Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. RESULTS: Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. CONCLUSIONS: We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.


Asunto(s)
Dosificación de Gen , Neoplasias Ováricas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Ciclina E/genética , Ciclina E/fisiología , Resistencia a Antineoplásicos , Femenino , Amplificación de Genes , Eliminación de Gen , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/fisiología , Humanos , Antígeno Ki-67/análisis , Persona de Mediana Edad , Coactivador 3 de Receptor Nuclear , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/fisiología , Neoplasias Ováricas/genética , Polimorfismo de Nucleótido Simple , Transactivadores/genética , Transactivadores/fisiología
10.
Clin Cancer Res ; 26(20): 5411-5423, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32554541

RESUMEN

PURPOSE: Gene expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. RESULTS: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with >95% accuracy that was maintained in all analytic and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications.See related commentary by McMullen et al., p. 5271.


Asunto(s)
Cistadenoma Seroso/genética , Proteínas de Neoplasias/genética , Neoplasias Ováricas/genética , Transcriptoma/genética , Anciano , Algoritmos , Cistadenoma Seroso/clasificación , Cistadenoma Seroso/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Linfocitos Infiltrantes de Tumor/patología , Persona de Mediana Edad , Clasificación del Tumor , Neoplasia Residual/clasificación , Neoplasia Residual/genética , Neoplasia Residual/patología , Neoplasias Ováricas/clasificación , Neoplasias Ováricas/patología
11.
Clin Cancer Res ; 14(21): 6924-32, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18980987

RESUMEN

PURPOSE: The standard of care for ovarian cancer includes platinum-based chemotherapy. It is not possible, however, to predict clinical platinum sensitivity or to design rational strategies to overcome resistance. We used a novel approach to identify altered gene expression associated with high sensitivity to cisplatin, to define novel targets to sensitize tumor cells to platins and ultimately improve the effectiveness of this widely used class of chemotherapeutics. EXPERIMENTAL DESIGN: Using differential display PCR, we identified genes differentially expressed in a mutagenized cell line with unusual sensitivity to cisplatin. The most highly differentially expressed gene was selected, and its role in determining cisplatin sensitivity was validated by gene transfection and small interfering RNA (siRNA) approaches, by association of expression levels with cisplatin sensitivity in cell lines, and by association of tumor expression levels with survival in a retrospective cohort of 71 patients with serous ovarian adenocarcinoma. RESULTS: The most highly differently expressed gene identified was ANKRD1, ankyrin repeat domain 1 (cardiac muscle). ANKRD1 mRNA levels were correlated with platinum sensitivity in cell lines, and most significantly, decreasing ANKRD1 using siRNA increased cisplatin sensitivity >2-fold. ANKRD1 was expressed in the majority of ovarian adenocarcinomas tested (62/71, 87%), and higher tumor levels of ANKRD1 were found in patients with worse outcome (overall survival, P=0.013). CONCLUSIONS: These findings suggest that ANKRD1, a gene not previously associated with ovarian cancer or with response to chemotherapy, is associated with treatment outcome, and decreasing ANKRD1 expression, or function, is a potential strategy to sensitize tumors to platinum-based drugs.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Cisplatino/uso terapéutico , Proteínas Musculares/genética , Proteínas Nucleares/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Proteínas Represoras/genética , Adenocarcinoma/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Antineoplásicos/uso terapéutico , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Persona de Mediana Edad , Datos de Secuencia Molecular , Neoplasias Ováricas/mortalidad , Análisis de Secuencia de Proteína , Análisis de Supervivencia
12.
Clin Cancer Res ; 14(16): 5198-208, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18698038

RESUMEN

PURPOSE: The study aim to identify novel molecular subtypes of ovarian cancer by gene expression profiling with linkage to clinical and pathologic features. EXPERIMENTAL DESIGN: Microarray gene expression profiling was done on 285 serous and endometrioid tumors of the ovary, peritoneum, and fallopian tube. K-means clustering was applied to identify robust molecular subtypes. Statistical analysis identified differentially expressed genes, pathways, and gene ontologies. Laser capture microdissection, pathology review, and immunohistochemistry validated the array-based findings. Patient survival within k-means groups was evaluated using Cox proportional hazards models. Class prediction validated k-means groups in an independent dataset. A semisupervised survival analysis of the array data was used to compare against unsupervised clustering results. RESULTS: Optimal clustering of array data identified six molecular subtypes. Two subtypes represented predominantly serous low malignant potential and low-grade endometrioid subtypes, respectively. The remaining four subtypes represented higher grade and advanced stage cancers of serous and endometrioid morphology. A novel subtype of high-grade serous cancers reflected a mesenchymal cell type, characterized by overexpression of N-cadherin and P-cadherin and low expression of differentiation markers, including CA125 and MUC1. A poor prognosis subtype was defined by a reactive stroma gene expression signature, correlating with extensive desmoplasia in such samples. A similar poor prognosis signature could be found using a semisupervised analysis. Each subtype displayed distinct levels and patterns of immune cell infiltration. Class prediction identified similar subtypes in an independent ovarian dataset with similar prognostic trends. CONCLUSION: Gene expression profiling identified molecular subtypes of ovarian cancer of biological and clinical importance.


Asunto(s)
Biomarcadores de Tumor/análisis , Perfilación de la Expresión Génica , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Adulto , Anciano , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Rayos Láser , Microdisección , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Ováricas/mortalidad , Pronóstico , Análisis de Matrices Tisulares
13.
Nat Commun ; 10(1): 3935, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477716

RESUMEN

Mucinous ovarian carcinoma (MOC) is a unique subtype of ovarian cancer with an uncertain etiology, including whether it genuinely arises at the ovary or is metastatic disease from other organs. In addition, the molecular drivers of invasive progression, high-grade and metastatic disease are poorly defined. We perform genetic analysis of MOC across all histological grades, including benign and borderline mucinous ovarian tumors, and compare these to tumors from other potential extra-ovarian sites of origin. Here we show that MOC is distinct from tumors from other sites and supports a progressive model of evolution from borderline precursors to high-grade invasive MOC. Key drivers of progression identified are TP53 mutation and copy number aberrations, including a notable amplicon on 9p13. High copy number aberration burden is associated with worse prognosis in MOC. Our data conclusively demonstrate that MOC arise from benign and borderline precursors at the ovary and are not extra-ovarian metastases.


Asunto(s)
Adenocarcinoma Mucinoso/genética , Carcinoma Epitelial de Ovario/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Ováricas/genética , Adenocarcinoma Mucinoso/clasificación , Adenocarcinoma Mucinoso/metabolismo , Carcinoma Epitelial de Ovario/clasificación , Carcinoma Epitelial de Ovario/metabolismo , Estudios de Cohortes , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Neoplasias Ováricas/clasificación , Neoplasias Ováricas/metabolismo , Análisis de Secuencia de ADN/métodos , Análisis de Supervivencia
14.
JCO Precis Oncol ; 2: 1-14, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35135122

RESUMEN

PURPOSE: Low-grade serous ovarian carcinoma (LGSC) responds poorly to chemotherapy and is characterized by activating mutations in the Ras sarcoma-mitogen-activated protein kinase (RAS-MAPK) pathway, including oncogenic BRAF. However, response to BRAF inhibitors is tumor-type specific. Significant improvement in survival is seen in patients with BRAF-mutant melanoma, but other cancer types, such as colorectal cancers, are generally less sensitive. We examined the frequency and characteristics of BRAF-mutated LGSC and described the response to treatment with BRAF inhibitors. PATIENTS AND METHODS: Mutations were assessed in LGSC (N = 65) by using targeted, exome, and whole-genome sequencing. Patient characteristics, treatment, and clinical outcome were assessed, and the median follow-up time was more than 5 years. BRAF inhibitors were trialed in two patients with a somatic BRAF V600E mutation: one patient received dabrafenib monotherapy and was monitored clinically, biochemically (cancer antigen [CA]-125 levels), and with positron emission tomography (PET) imaging. Expression of the BRAF V600E protein in this patient was assessed by immunohistochemistry. RESULTS: Among patients with LGSC, nine (13.8%) of 65 had a somatic BRAF mutation. Of the nine patients with BRAF mutation-positive LGSC, four experienced progressive disease that did not respond to conventional chemotherapy. Two of the patients experienced progression quickly and died as a result of disease progression, and two received targeted treatment. Two patients with BRAF V600E mutation received BRAF inhibitors at relapse and both achieved durable responses. CONCLUSION: BRAF mutations are not uncommon in patients with LGSC and should be routinely tested, because BRAF inhibitors can be an effective treatment for these patients. The results highlight the need for targeted treatment in this rare tumor type, and a prospective study is needed to formally assess the response rate and clinical benefit.

15.
Sci Rep ; 8(1): 1508, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367611

RESUMEN

Identifying single nucleotide polymorphisms (SNPs) that influence chemotherapy disposition may help to personalize cancer treatment and limit toxicity. Genome-wide approaches are unbiased, compared with candidate gene studies, but usually require large cohorts. As most chemotherapy is given cyclically multiple blood sampling is required to adequately define drug disposition, limiting patient recruitment. We found that carboplatin and paclitaxel disposition are stable phenotypes in ovarian cancer patients and tested a genome-wide association study (GWAS) design to identify SNPs associated with chemotherapy disposition. We found highly significant SNPs in ABCC2, a known carboplatin transporter, associated with carboplatin clearance (asymptotic P = 5.2 × 106, empirical P = 1.4 × 10-5), indicating biological plausibility. We also identified novel SNPs associated with paclitaxel disposition, including rs17130142 with genome-wide significance (asymptotic P = 2.0 × 10-9, empirical P = 1.3 × 10-7). Although requiring further validation, our work demonstrated that GWAS of chemotherapeutic drug disposition can be effective, even in relatively small cohorts, and can be adopted in drug development and treatment programs.


Asunto(s)
Antineoplásicos/metabolismo , Carboplatino/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Estudio de Asociación del Genoma Completo , Paclitaxel/metabolismo , Antineoplásicos/administración & dosificación , Carboplatino/administración & dosificación , Femenino , Genoma Humano , Humanos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Paclitaxel/administración & dosificación , Polimorfismo de Nucleótido Simple
16.
Clin Cancer Res ; 24(3): 569-580, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29061645

RESUMEN

Purpose: Women with epithelial ovarian cancer generally have a poor prognosis; however, a subset of patients has an unexpected dramatic and durable response to treatment. We sought to identify clinical, pathological, and molecular determinants of exceptional survival in women with high-grade serous cancer (HGSC), a disease associated with the majority of ovarian cancer deaths.Experimental Design: We evaluated the histories of 2,283 ovarian cancer patients and, after applying stringent clinical and pathological selection criteria, identified 96 with HGSC that represented significant outliers in terms of treatment response and overall survival. Patient samples were characterized immunohistochemically and by genome sequencing.Results: Different patterns of clinical response were seen: long progression-free survival (Long-PFS), multiple objective responses to chemotherapy (Multiple Responder), and/or greater than 10-year overall survival (Long-Term Survivors). Pathogenic germline and somatic mutations in genes involved in homologous recombination (HR) repair were enriched in all three groups relative to a population-based series. However, 29% of 10-year survivors lacked an identifiable HR pathway alteration, and tumors from these patients had increased Ki-67 staining. CD8+ tumor-infiltrating lymphocytes were more commonly present in Long-Term Survivors. RB1 loss was associated with long progression-free and overall survival. HR deficiency and RB1 loss were correlated, and co-occurrence was significantly associated with prolonged survival.Conclusions: There was diversity in the clinical trajectory of exceptional survivors associated with multiple molecular determinants of exceptional outcome in HGSC patients. Concurrent HR deficiency and RB1 loss were associated with favorable outcomes, suggesting that co-occurrence of specific mutations might mediate durable responses in such patients. Clin Cancer Res; 24(3); 569-80. ©2017 AACRSee related commentary by Peng and Mills, p. 508.


Asunto(s)
Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/mortalidad , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Reparación del ADN por Recombinación , Proteína de Retinoblastoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Cistadenocarcinoma Seroso/diagnóstico , Femenino , Recombinación Homóloga , Humanos , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/metabolismo , Pronóstico , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Análisis de Supervivencia , Evaluación de Síntomas
17.
Cancer Res ; 77(16): 4268-4278, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28646021

RESUMEN

Low-grade serous ovarian carcinomas (LGSC) are associated with a poor response to chemotherapy and are molecularly characterized by RAS pathway activation. Using exome and whole genome sequencing, we identified recurrent mutations in the protein translational regulator EIF1AX and in NF1, USP9X, KRAS, BRAF, and NRAS RAS pathway mutations were mutually exclusive; however, we found significant co-occurrence of mutations in NRAS and EIF1AX Missense EIF1AX mutations were clustered at the N-terminus of the protein in a region associated with its role in ensuring translational initiation fidelity. Coexpression of mutant NRAS and EIF1AX proteins promoted proliferation and clonogenic survival in LGSC cells, providing the first example of co-occurring, growth-promoting mutational events in ovarian cancer. Cancer Res; 77(16); 4268-78. ©2017 AACR.


Asunto(s)
Cistadenocarcinoma Seroso/genética , Factor 1 Eucariótico de Iniciación/genética , GTP Fosfohidrolasas/genética , Proteínas de la Membrana/genética , Mutación , Neoplasias Ováricas/genética , Línea Celular Tumoral , Cistadenocarcinoma Seroso/patología , Factor 1 Eucariótico de Iniciación/biosíntesis , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Mutagénesis Sitio-Dirigida , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias Ováricas/patología
19.
Oncotarget ; 6(35): 37663-77, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26506417

RESUMEN

Low grade serous ovarian tumours are a rare and under-characterised histological subtype of epithelial ovarian tumours, with little known of the molecular drivers and facilitators of tumorigenesis beyond classic oncogenic RAS/RAF mutations. With a move towards targeted therapies due to the chemoresistant nature of this subtype, it is pertinent to more fully characterise the genetic events driving this tumour type, some of which may influence response to therapy and/or development of drug resistance. We performed genome-wide high-resolution genomic copy number analysis (Affymetrix SNP6.0) and mutation hotspot screening (KRAS, BRAF, NRAS, HRAS, ERBB2 and TP53) to compare a large cohort of ovarian serous borderline tumours (SBTs, n = 57) with low grade serous carcinomas (LGSCs, n = 19). Whole exome sequencing was performed for 13 SBTs, nine LGSCs and one mixed low/high grade carcinoma. Copy number aberrations were detected in 61% (35/57) of SBTs, compared to 100% (19/19) of LGSCs. Oncogenic RAS/RAF/ERBB2 mutations were detected in 82.5% (47/57) of SBTs compared to 63% (12/19) of LGSCs, with NRAS mutations detected only in LGSC. Some copy number aberrations appeared to be enriched in LGSC, most significantly loss of 9p and homozygous deletions of the CDKN2A/2B locus. Exome sequencing identified BRAF, KRAS, NRAS, USP9X and EIF1AX as the most frequently mutated genes. We have identified markers of progression from borderline to LGSC and novel drivers of LGSC. USP9X and EIF1AX have both been linked to regulation of mTOR, suggesting that mTOR inhibitors may be a key companion treatment for targeted therapy trials of MEK and RAF inhibitors.


Asunto(s)
Biomarcadores de Tumor/genética , Cistadenocarcinoma Seroso/genética , Exoma/genética , Perfilación de la Expresión Génica , Variación Genética/genética , Neoplasias Ováricas/genética , Adulto , Anciano , Anciano de 80 o más Años , Cistadenocarcinoma Seroso/patología , Femenino , Estudios de Seguimiento , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/patología , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
20.
Clin Cancer Res ; 20(24): 6618-30, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25316818

RESUMEN

PURPOSE: Low-grade serous ovarian carcinomas (LGSC) are Ras pathway-mutated, TP53 wild-type, and frequently associated with borderline tumors. Patients with LGSCs respond poorly to platinum-based chemotherapy and may benefit from pathway-targeted agents. High-grade serous carcinomas (HGSC) are TP53-mutated and are thought to be rarely associated with borderline tumors. We sought to determine whether borderline histology associated with grade 2 or 3 carcinoma was an indicator of Ras mutation, and we explored the molecular relationship between coexisting invasive and borderline histologies. EXPERIMENTAL DESIGN: We reviewed >1,200 patients and identified 102 serous carcinomas with adjacent borderline regions for analyses, including candidate mutation screening, copy number, and gene expression profiling. RESULTS: We found a similar frequency of low, moderate, and high-grade carcinomas with coexisting borderline histology. BRAF/KRAS alterations were common in LGSC; however, we also found recurrent NRAS mutations. Whereas borderline tumors harbored BRAF/KRAS mutations, NRAS mutations were restricted to carcinomas, representing the first example of a Ras oncogene with an obligatory association with invasive serous cancer. Coexisting borderline and invasive components showed nearly identical genomic profiles. Grade 2 cases with coexisting borderline included tumors with molecular features of LGSC, whereas others were typical of HGSC. However, all grade 3 carcinomas with coexisting borderline histology were molecularly indistinguishable from typical HGSC. CONCLUSION: Our findings suggest that NRAS is an oncogenic driver in serous ovarian tumors. We demonstrate that borderline histology is an unreliable predictor of Ras pathway aberration and underscore an important role for molecular classification in identifying patients that may benefit from targeted agents.


Asunto(s)
Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Mutación , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Análisis por Conglomerados , Estudios de Cohortes , Cistadenocarcinoma Seroso/mortalidad , Cistadenocarcinoma Seroso/patología , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica , Estadificación de Neoplasias , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Polimorfismo de Nucleótido Simple , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA