Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 292(46): 18988-19000, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28939765

RESUMEN

Thioredoxin 1 (Trx1) is a 12-kDa oxidoreductase that catalyzes thiol-disulfide exchange reactions to reduce proteins with disulfide bonds. As such, Trx1 helps protect the heart against stresses, such as ischemia and pressure overload. Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth, metabolism, and survival. We have shown previously that mTOR activity is increased in response to myocardial ischemia-reperfusion injury. However, whether Trx1 interacts with mTOR to preserve heart function remains unknown. Using a substrate-trapping mutant of Trx1 (Trx1C35S), we show here that mTOR is a direct interacting partner of Trx1 in the heart. In response to H2O2 treatment in cardiomyocytes, mTOR exhibited a high molecular weight shift in non-reducing SDS-PAGE in a 2-mercaptoethanol-sensitive manner, suggesting that mTOR is oxidized and forms disulfide bonds with itself or other proteins. The mTOR oxidation was accompanied by reduced phosphorylation of endogenous substrates, such as S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1) in cardiomyocytes. Immune complex kinase assays disclosed that H2O2 treatment diminished mTOR kinase activity, indicating that mTOR is inhibited by oxidation. Of note, Trx1 overexpression attenuated both H2O2-mediated mTOR oxidation and inhibition, whereas Trx1 knockdown increased mTOR oxidation and inhibition. Moreover, Trx1 normalized H2O2-induced down-regulation of metabolic genes and stimulation of cell death, and an mTOR inhibitor abolished Trx1-mediated rescue of gene expression. H2O2-induced oxidation and inhibition of mTOR were attenuated when Cys-1483 of mTOR was mutated to phenylalanine. These results suggest that Trx1 protects cardiomyocytes against stress by reducing mTOR at Cys-1483, thereby preserving the activity of mTOR and inhibiting cell death.


Asunto(s)
Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Serina-Treonina Quinasas TOR/metabolismo , Tiorredoxinas/metabolismo , Animales , Muerte Celular , Células Cultivadas , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/citología , Fosforilación , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas/metabolismo
2.
Antioxidants (Basel) ; 10(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34356388

RESUMEN

Thioredoxin 1 (Trx1) is a major antioxidant that acts adaptively to protect the heart during the development of diabetic cardiomyopathy. The molecular mechanism(s) responsible for regulating the Trx1 level and/or activity during diabetic cardiomyopathy is unknown. ß-hydroxybutyrate (ßHB), a major ketone body in mammals, acts as an alternative energy source in cardiomyocytes under stress, but it also appears to be involved in additional mechanisms that protect the heart against stress. ßHB upregulated Trx1 in primary cultured cardiomyocytes in a dose- and a time-dependent manner and a ketogenic diet upregulated Trx1 in the heart. ßHB protected cardiomyocytes against H2O2-induced death, an effect that was abolished in the presence of Trx1 knockdown. ßHB also alleviated the H2O2-induced inhibition of mTOR and AMPK, known targets of Trx1, in a Trx1-dependent manner, suggesting that ßHB potentiates Trx1 function. It has been shown that ßHB is a natural inhibitor of HDAC1 and knockdown of HDAC1 upregulated Trx1 in cardiomyocytes, suggesting that ßHB may upregulate Trx1 through HDAC inhibition. ßHB induced Trx1 acetylation and inhibited Trx1 degradation, suggesting that ßHB-induced inhibition of HDAC1 may stabilize Trx1 through protein acetylation. These results suggest that ßHB potentiates the antioxidant defense in cardiomyocytes through the inhibition of HDAC1 and the increased acetylation and consequent stabilization of Trx1. Thus, modest upregulation of ketone bodies in diabetic hearts may protect the heart through the upregulation of Trx1.

3.
Cardiovasc Res ; 116(10): 1742-1755, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31584633

RESUMEN

AIMS: Thioredoxin 1 (Trx1) is an evolutionarily conserved oxidoreductase that cleaves disulphide bonds in oxidized substrate proteins such as mechanistic target of rapamycin (mTOR) and maintains nuclear-encoded mitochondrial gene expression. The cardioprotective effect of Trx1 has been demonstrated via cardiac-specific overexpression of Trx1 and dominant negative Trx1. However, the pathophysiological role of endogenous Trx1 has not been defined with a loss-of-function model. To address this, we have generated cardiac-specific Trx1 knockout (Trx1cKO) mice. METHODS AND RESULTS: Trx1cKO mice were viable but died with a median survival age of 25.5 days. They developed heart failure, evidenced by contractile dysfunction, hypertrophy, and increased fibrosis and apoptotic cell death. Multiple markers consistently indicated increased oxidative stress and RNA-sequencing revealed downregulation of genes involved in energy production in Trx1cKO mice. Mitochondrial morphological abnormality was evident in these mice. Although heterozygous Trx1cKO mice did not show any significant baseline phenotype, pressure-overload-induced cardiac dysfunction, and downregulation of metabolic genes were exacerbated in these mice. mTOR was more oxidized and phosphorylation of mTOR substrates such as S6K and 4EBP1 was impaired in Trx1cKO mice. In cultured cardiomyocytes, Trx1 knockdown inhibited mitochondrial respiration and metabolic gene promoter activity, suggesting that Trx1 maintains mitochondrial function in a cell autonomous manner. Importantly, mTOR-C1483F, an oxidation-resistant mutation, prevented Trx1 knockdown-induced mTOR oxidation and inhibition and attenuated suppression of metabolic gene promoter activity. CONCLUSION: Endogenous Trx1 is essential for maintaining cardiac function and metabolism, partly through mTOR regulation via Cys1483.


Asunto(s)
Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tiorredoxinas/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Estrés Oxidativo , Ratas Wistar , Transducción de Señal , Tiorredoxinas/genética
4.
JCI Insight ; 52019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31393858

RESUMEN

Dual peroxisome proliferator-activated receptor (PPAR)α/γ agonists that were developed to target hyperlipidemia and hyperglycemia in type 2 diabetes patients, caused cardiac dysfunction or other adverse effects. We studied the mechanisms that underlie the cardiotoxic effects of a dual PPARα/γ agonist, tesaglitazar, in wild type and diabetic (leptin receptor deficient - db/db) mice. Mice treated with tesaglitazar-containing chow or high fat diet developed cardiac dysfunction despite lower plasma triglycerides and glucose levels. Expression of cardiac peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which promotes mitochondrial biogenesis, had the most profound reduction among various fatty acid metabolism genes. Furthermore, we observed increased acetylation of PGC1α, which suggests PGC1α inhibition and lowered sirtuin 1 (SIRT1) expression. This change was associated with lower mitochondrial abundance. Combined pharmacological activation of PPARα and PPARγ in C57BL/6 mice reproduced the reduction of PGC1α expression and mitochondrial abundance. Resveratrol-mediated SIRT1 activation attenuated tesaglitazar-induced cardiac dysfunction and corrected myocardial mitochondrial respiration in C57BL/6 and diabetic mice but not in cardiomyocyte-specific Sirt1-/- mice. Our data shows that drugs, which activate both PPARα and PPARγ lead to cardiac dysfunction associated with PGC1α suppression and lower mitochondrial abundance likely due to competition between these two transcription factors.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Peroxisomas/metabolismo , Sirtuina 1/metabolismo , Alcanosulfonatos/efectos adversos , Animales , Glucemia , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , PPAR alfa/agonistas , PPAR gamma/agonistas , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fenilpropionatos/efectos adversos , Receptores de Leptina/metabolismo , Sirtuina 1/genética , Factores de Transcripción , Transcriptoma
5.
Circ Heart Fail ; 12(3): e005529, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30798619

RESUMEN

BACKGROUND: Proper dynamics of RNA polymerase II, such as promoter recruitment and elongation, are essential for transcription. PGC-1α (peroxisome proliferator-activated receptor [PPAR]-γ coactivator-1α), also termed PPARGC1a, is a transcriptional coactivator that stimulates energy metabolism, and PGC-1α target genes are downregulated in the failing heart. However, whether the dysregulation of polymerase II dynamics occurs in PGC-1α target genes in heart failure has not been defined. METHODS AND RESULTS: Chromatin immunoprecipitation-sequencing revealed that reduced promoter occupancy was a major form of polymerase II dysregulation on PGC-1α target metabolic gene promoters in the pressure-overload-induced heart failure model. PGC-1α-cKO (cardiac-specific PGC-1α knockout) mice showed phenotypic similarity to the pressure-overload-induced heart failure model in wild-type mice, such as contractile dysfunction and downregulation of PGC-1α target genes, even under basal conditions. However, the protein levels of PGC-1α were neither changed in the pressure-overload model nor in human failing hearts. Chromatin immunoprecipitation assays revealed that the promoter occupancy of polymerase II and PGC-1α was consistently reduced both in the pressure-overload model and PGC-1α-cKO mice. In vitro DNA binding assays using an endogenous PGC-1α target gene promoter sequence confirmed that PGC-1α recruits polymerase II to the promoter. CONCLUSIONS: These results suggest that PGC-1α promotes the recruitment of polymerase II to the PGC-1α target gene promoters. Downregulation of PGC-1α target genes in the failing heart is attributed, in part, to a reduction of the PGC-1α occupancy and the polymerase II recruitment to the promoters, which might be a novel mechanism of metabolic perturbations in the failing heart.


Asunto(s)
Insuficiencia Cardíaca/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ratones , Ratones Noqueados , ARN Polimerasa II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA