Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(7): 070401, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244410

RESUMEN

In bosonic gases at thermal equilibrium, an external quadratic drive can induce a Bose-Einstein condensation described by the Ising transition, as a consequence of the explicitly broken U(1) phase rotation symmetry down to Z_{2}. However, in physical realizations such as exciton polaritons and nonlinear photonic lattices, thermal equilibrium is lost and the state is rather determined by a balance between losses and external drive. A fundamental question is then how nonequilibrium fluctuations affect this transition. Here, we show that in a two-dimensional driven-dissipative Bose system the Ising phase is suppressed and replaced by a nonequilibrium phase featuring Kardar-Parisi-Zhang (KPZ) physics. Its emergence is rooted in a U(1)-symmetry restoration mechanism enabled by the strong fluctuations in reduced dimensionality. Moreover, we show that the presence of the quadratic drive term enhances the visibility of the KPZ scaling, compared to two-dimensional U(1)-symmetric gases, where it has remained so far elusive.

2.
Phys Rev Lett ; 122(4): 040402, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768301

RESUMEN

An isolated quantum gas with a localized loss features a nonmonotonic behavior of the particle loss rate as an incarnation of the quantum Zeno effect, as recently shown in experiments with cold atomic gases. While this effect can be understood in terms of local, microscopic physics, we show that novel many-body effects emerge when nonlinear gapless quantum fluctuations become important. To this end, we investigate the effect of a local dissipative impurity on a one-dimensional gas of interacting fermions. We show that the escape probability for modes close to the Fermi energy vanishes for an arbitrary strength of the dissipation. In addition, transport properties across the impurity are qualitatively modified, similarly to the Kane-Fisher barrier problem. We substantiate these findings using both a microscopic model of spinless fermions and a Luttinger liquid description.

3.
Phys Rev Lett ; 118(13): 135701, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28409986

RESUMEN

We study the prethermal dynamics of an interacting quantum field theory with an N-component order parameter and O(N) symmetry, suddenly quenched in the vicinity of a dynamical critical point. Depending on the initial conditions, the evolution of the order parameter, and of the response and correlation functions, can exhibit a temporal crossover between universal dynamical scaling regimes governed, respectively, by a quantum and a classical prethermal fixed point, as well as a crossover from a Gaussian to a non-Gaussian prethermal dynamical scaling. Together with a recent experiment, this suggests that quenches may be used in order to explore the rich variety of dynamical critical points occurring in the nonequilibrium dynamics of a quantum many-body system. We illustrate this fact by using a combination of renormalization group techniques and a nonperturbative large-N limit.

4.
Phys Rev E ; 109(1-1): 014104, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366467

RESUMEN

We investigate the finite-size origin of the coherence time (or equivalently of its inverse, the emission linewidth) of a spatially extended, one-dimensional nonequilibrium condensate. We show that the well-known Schawlow-Townes scaling of laser theory, possibly including the Henry broadening factor, only holds for small system sizes, while in larger systems the linewidth displays a novel scaling determined by Kardar-Parisi-Zhang physics. This is shown to lead to an opposite dependence of the coherence time on the optical nonlinearity in the two cases. We then study how subuniversal properties of the phase dynamics such as the higher moments of the phase-phase correlator are affected by the finite size and discuss the relation between the field coherence and the exponential of the phase-phase correlator. We finally identify a configuration with enhanced open boundary conditions, which supports a spatially uniform steady state and facilitates experimental studies of the coherence time scaling.

5.
Nat Commun ; 12(1): 5901, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625551

RESUMEN

Quantum spin liquids provide paradigmatic examples of highly entangled quantum states of matter. Frustration is the key mechanism to favor spin liquids over more conventional magnetically ordered states. Here we propose to engineer frustration by exploiting the coupling of quantum magnets to the quantized light of an optical cavity. The interplay between the quantum fluctuations of the electro-magnetic field and the strongly correlated electrons results in a tunable long-range interaction between localized spins. This cavity-induced frustration robustly stabilizes spin liquid states, which occupy an extensive region in the phase diagram spanned by the range and strength of the tailored interaction. This occurs even in originally unfrustrated systems, as we showcase for the Heisenberg model on the square lattice.

6.
Artículo en Inglés | MEDLINE | ID: mdl-26565212

RESUMEN

The nonequilibrium dynamics of an isolated quantum system after a sudden quench to a dynamical critical point is expected to be characterized by scaling and universal exponents due to the absence of time scales. We explore these features for a quench of the parameters of a Hamiltonian with O(N) symmetry, starting from a ground state in the disordered phase. In the limit of infinite N, the exponents and scaling forms of the relevant two-time correlation functions can be calculated exactly. Our analytical predictions are confirmed by the numerical solution of the corresponding equations. Moreover, we find that the same scaling functions, yet with different exponents, also describe the coarsening dynamics for quenches below the dynamical critical point.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA