Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 100: 186-198, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31901312

RESUMEN

Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium. Together, the models illustrate how this programming environment can be used in diverse ways to integrate what has been learnt from biological experiments about the nature of interactions between cells and their environment, and explore how these interactions could potentially determine emergent patterns of cell fate specification, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.


Asunto(s)
Movimiento Celular , Sistema de la Línea Lateral/citología , Sistema de la Línea Lateral/embriología , Modelos Biológicos , Morfogénesis , Pez Cebra/embriología , Animales
2.
Development ; 145(14)2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-29945870

RESUMEN

The zebrafish posterior lateral line primordium migrates along a path defined by the chemokine Cxcl12a, periodically depositing neuromasts, to pioneer formation of the zebrafish posterior lateral line system. snail1b, known for its role in promoting cell migration, is expressed in leading cells of the primordium in response to Cxcl12a, whereas its expression in trailing cells is inhibited by Fgf signaling. snail1b knockdown delays initiation of primordium migration. This delay is associated with aberrant expansion of epithelial cell adhesion molecule (epcam) and reduction of cadherin 2 expression in the leading part of the primordium. Co-injection of snail1b morpholino with snail1b mRNA prevents the initial delay in migration and restores normal expression of epcam and cadherin 2 The delay in initiating primordium migration in snail1b morphants is accompanied by a delay in sequential formation of trailing Fgf signaling centers and associated protoneuromasts. This delay is not specifically associated with knockdown of snail1b but also with other manipulations that delay migration of the primordium. These observations reveal an unexpected link between the initiation of collective migration and sequential formation of protoneuromasts in the primordium.


Asunto(s)
Movimiento Celular/genética , Quimiocina CXCL2/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Sistema de la Línea Lateral/embriología , Sistema Nervioso/embriología , Factores de Transcripción de la Familia Snail/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12 , Quimiocinas/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Sistema de la Línea Lateral/citología , Sistema de la Línea Lateral/efectos de los fármacos , Sistema de la Línea Lateral/metabolismo , Modelos Biológicos , Morfolinos/farmacología , Sistema Nervioso/citología , Factores de Transcripción de la Familia Snail/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Imagen de Lapso de Tiempo , Vía de Señalización Wnt/efectos de los fármacos , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
PLoS Biol ; 15(12): e2004412, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29261650

RESUMEN

Sixty-five years after Turing first revealed the potential of systems with local activation and long-range inhibition to generate pattern, we have only recently begun to identify the biological elements that operate at many scales to generate periodic patterns in nature. In this Primer, we first review the theoretical framework provided by Turing, Meinhardt, and others that suggests how periodic patterns could self-organize in developing animals. This Primer was developed to provide context for recent studies that reveal how diverse molecular, cellular, and physical mechanisms contribute to the establishment of the periodic pattern of hair or feather buds in the developing skin. From an initial emphasis on trying to disambiguate which specific mechanism plays a primary role in hair or feather bud development, we are beginning to discover that multiple mechanisms may, in at least some contexts, operate together. While the emergence of the diverse mechanisms underlying pattern formation in specific biological contexts probably reflects the contingencies of evolutionary history, an intriguing possibility is that these mechanisms interact and reinforce each other, producing emergent systems that are more robust.


Asunto(s)
Tipificación del Cuerpo/fisiología , Plumas/citología , Cabello/citología , Modelos Biológicos , Animales , Plumas/anatomía & histología , Plumas/crecimiento & desarrollo , Cabello/anatomía & histología , Cabello/crecimiento & desarrollo , Transducción de Señal , Piel/anatomía & histología , Piel/citología , Piel/crecimiento & desarrollo
4.
Development ; 143(17): 3085-96, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27510968

RESUMEN

We identified Erythrocyte membrane protein band 4.1-like 5 (Epb41l5) as a substrate for the E3 ubiquitin ligase Mind bomb 1 (Mib1), which is essential for activation of Notch signaling. Although loss of Epb41l5 does not significantly alter the pattern of neural progenitor cells (NPCs) specified as neurons at the neural plate stage, it delays their delamination and differentiation after neurulation when NPCs normally acquire organized apical junctional complexes (AJCs) in the zebrafish hindbrain. Delays in differentiation are reduced by knocking down N-cadherin, a manipulation expected to help destabilize adherens junctions (AJs). This suggested that delays in neuronal differentiation in epb41l5-deficient embryos are related to a previously described role for Epb41l5 in facilitating disassembly of cadherin-dependent AJCs. Mib1 ubiquitylates Epb41l5 to promote its degradation. DeltaD can compete with Epb41l5 to reduce Mib1-dependent Epb41l5 degradation. In this context, increasing the number of NPCs specified to become neurons, i.e. cells expressing high levels of DeltaD, stabilizes Epb41l5 in the embryo. Together, these observations suggest that relatively high levels of Delta stabilize Epb41l5 in NPCs specified as neurons. This, we suggest, helps coordinate NPC specification with Epb41l5-dependent delamination and differentiation as neurons.


Asunto(s)
Proteínas de la Membrana/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Western Blotting , Línea Celular , Perros , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Proteínas de la Membrana/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/genética
5.
Dev Biol ; 422(1): 14-23, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27965055

RESUMEN

The zebrafish Posterior Lateral Line primordium (PLLp) has emerged as an important model system for studying many aspects of development, including cell migration, cell type specification and tissue morphogenesis. Despite this, basic aspects of PLLp biology remain incompletely understood. The PLLp is a group of approximately 140 cells which pioneers the formation of the Posterior Lateral Line (LL) system by migrating along the length of the embryo, periodically depositing clusters of epithelial cells, which will go on to form the mature sense organs of the lateral line, called neuromasts. The neuromasts are formed within the migrating PLLp as protoneuromasts: the first protoneuromast is formed close to the trailing end and additional protoneuromasts are formed sequentially, progressively closer to the leading edge of the migrating collective. We imaged the migration of PLL primordia and tracked every cell in the lateral line system over the course of migration. From this data set we unambiguously determined the lineage and fate of every cell deposited by the migrating PLLp. We show that, on average, proliferation across the entire PLLp is weakly patterned, with leading cells tending to divide more slowly than trailing cells. Neuromasts are formed sequentially by local expansion of existing cells along the length of the PLLp, not by self-renewing stem cell-like divisions of a restricted leading population that is highly proliferative. The fate of deposited cells, either within neuromasts or as interneuromast cells (in between deposited neuromasts) is not determined by any obvious stereotyped lineages. Instead, it is determined somewhat stochasitcailly, as a function of a cells distance from the center of a maturing protoneuromast. Together, our data provide a rigorous baseline for the behavior of the PLLp, which can be used to inform further study of this important model system.


Asunto(s)
Sistema de la Línea Lateral/embriología , Pez Cebra/embriología , Animales , Ciclo Celular , División Celular , Movimiento Celular
6.
PLoS Comput Biol ; 13(4): e1005451, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28369079

RESUMEN

Collective cell migration plays an important role in development. Here, we study the posterior lateral line primordium (PLLP) a group of about 100 cells, destined to form sensory structures, that migrates from head to tail in the zebrafish embryo. We model mutually inhibitory FGF-Wnt signalling network in the PLLP and link tissue subdivision (Wnt receptor and FGF receptor activity domains) to receptor-ligand parameters. We then use a 3D cell-based simulation with realistic cell-cell adhesion, interaction forces, and chemotaxis. Our model is able to reproduce experimentally observed motility with leading cells migrating up a gradient of CXCL12a, and trailing (FGF receptor active) cells moving actively by chemotaxis towards FGF ligand secreted by the leading cells. The 3D simulation framework, combined with experiments, allows an investigation of the role of cell division, chemotaxis, adhesion, and other parameters on the shape and speed of the PLLP. The 3D model demonstrates reasonable behaviour of control as well as mutant phenotypes.


Asunto(s)
Tipificación del Cuerpo , Movimiento Celular , Polaridad Celular , Pez Cebra/embriología , Animales , Biología Computacional , Modelos Biológicos
7.
Development ; 141(16): 3188-96, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063456

RESUMEN

Collective migration of cells in the zebrafish posterior lateral line primordium (PLLp) along a path defined by Cxcl12a expression depends on Cxcr4b receptors in leading cells and on Cxcr7b in trailing cells. Cxcr7b-mediated degradation of Cxcl12a by trailing cells generates a local gradient of Cxcl12a that guides PLLp migration. Agent-based computer models were built to explore how a polarized response to Cxcl12a, mediated by Cxcr4b in leading cells and prevented by Cxcr7b in trailing cells, determines unidirectional migration of the PLLp. These chemokine signaling-based models effectively recapitulate many behaviors of the PLLp and provide potential explanations for the characteristic behaviors that emerge when the PLLp is severed by laser to generate leading and trailing fragments. As predicted by our models, the bilateral stretching of the leading fragment is lost when chemokine signaling is blocked in the PLLp. However, movement of the trailing fragment toward the leading cells, which was also thought to be chemokine dependent, persists. This suggested that a chemokine-independent mechanism, not accounted for in our models, is responsible for this behavior. Further investigation of trailing cell behavior shows that their movement toward leading cells depends on FGF signaling and it can be re-oriented by exogenous FGF sources. Together, our observations reveal the simple yet elegant manner in which leading and trailing cells coordinate migration; while leading cells steer PLLp migration by following chemokine cues, cells further back play follow-the-leader as they migrate toward FGFs produced by leading cells.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Sistema de la Línea Lateral/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Comunicación Celular , Movimiento Celular , Quimiocina CXCL12/fisiología , Quimiocinas/metabolismo , Simulación por Computador , Factores de Crecimiento de Fibroblastos/metabolismo , Receptores CXCR/fisiología , Receptores CXCR4/fisiología , Transducción de Señal , Proteínas de Pez Cebra/fisiología
8.
Development ; 140(11): 2387-97, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23637337

RESUMEN

The posterior lateral line primordium (PLLp) migrates caudally and periodically deposits neuromasts. Coupled, but mutually inhibitory, Wnt-FGF signaling systems regulate proto-neuromast formation in the PLLp: FGF ligands expressed in response to Wnt signaling activate FGF receptors and initiate proto-neuromast formation. FGF receptor signaling, in turn, inhibits Wnt signaling. However, mechanisms that determine periodic neuromast formation and deposition in the PLLp remain poorly understood. Previous studies showed that neuromasts are deposited closer together and the PLLp terminates prematurely in lef1-deficient zebrafish embryos. It was suggested that this results from reduced proliferation in the leading domain of the PLLp and/or premature incorporation of progenitors into proto-neuromasts. We found that rspo3 knockdown reduces proliferation in a manner similar to that seen in lef1 morphants. However, it does not cause closer neuromast deposition or premature termination of the PLLp, suggesting that such changes in lef1-deficient embryos are not linked to changes in proliferation. Instead, we suggest that they are related to the role of Lef1 in regulating the balance of Wnt and FGF functions in the PLLp. Lef1 determines expression of the FGF signaling inhibitor Dusp6 in leading cells and regulates incorporation of cells into neuromasts; reduction of Dusp6 in leading cells in lef1-deficient embryos allows new proto-neuromasts to form closer to the leading edge. This is associated with progressively slower PLLp migration, reduced spacing between deposited neuromasts and premature termination of the PLLp system.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema de la Línea Lateral/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Proliferación Celular , Fosfatasa 6 de Especificidad Dual/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ligandos , Mutación , Trombospondinas , Factores de Transcripción/genética , Vía de Señalización Wnt , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Development ; 139(24): 4571-81, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23136387

RESUMEN

During development, morphogenetic processes require a precise coordination of cell differentiation, cell shape changes and, often, cell migration. Yet, how pattern information is used to orchestrate these different processes is still unclear. During lateral line (LL) morphogenesis, a group of cells simultaneously migrate and assemble radially organized cell clusters, termed rosettes, that prefigure LL sensory organs. This process is controlled by Fibroblast growth factor (FGF) signalling, which induces cell fate changes, cell migration and cell shape changes. However, the exact molecular mechanisms induced by FGF activation that mediate these changes on a cellular level are not known. Here, we focus on the mechanisms by which FGFs control apical constriction and rosette assembly. We show that apical constriction in the LL primordium requires the activity of non-muscle myosin. We demonstrate further that shroom3, a well-known regulator of non-muscle myosin activity, is expressed in the LL primordium and that its expression requires FGF signalling. Using gain- and loss-of-function experiments, we demonstrate that Shroom3 is the main organizer of cell shape changes during rosette assembly, probably by coordinating Rho kinase recruitment and non-muscle myosin activation. In order to quantify morphogenesis in the LL primordium in an unbiased manner, we developed a unique trainable 'rosette detector'. We thus propose a model in which Shroom3 drives rosette assembly in the LL downstream of FGF in a Rho kinase- and non-muscle myosin-dependent manner. In conclusion, we uncovered the first mechanistic link between patterning and morphogenesis during LL sensory organ formation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Sistema de la Línea Lateral/embriología , Mecanorreceptores/fisiología , Proteínas de Microfilamentos/fisiología , Morfogénesis/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Polaridad Celular/genética , Embrión no Mamífero , Factores de Crecimiento de Fibroblastos/fisiología , Sistema de la Línea Lateral/metabolismo , Sistema de la Línea Lateral/fisiología , Mecanorreceptores/citología , Mecanorreceptores/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Morfogénesis/fisiología , Miosinas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Distribución Tisular/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Nat Methods ; 9(7): 749-54, 2012 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-22581372

RESUMEN

We demonstrate three-dimensional (3D) super-resolution in live multicellular organisms using structured illumination microscopy (SIM). Sparse multifocal illumination patterns generated by a digital micromirror device (DMD) allowed us to physically reject out-of-focus light, enabling 3D subdiffractive imaging in samples eightfold thicker than had been previously imaged with SIM. We imaged samples at one 2D image per second, at resolutions as low as 145 nm laterally and 400 nm axially. In addition to dual-labeled, whole fixed cells, we imaged GFP-labeled microtubules in live transgenic zebrafish embryos at depths >45 µm. We captured dynamic changes in the zebrafish lateral line primordium and observed interactions between myosin IIA and F-actin in cells encapsulated in collagen gels, obtaining two-color 4D super-resolution data sets spanning tens of time points and minutes without apparent phototoxicity. Our method uses commercially available parts and open-source software and is simpler than existing SIM implementations, allowing easy integration with wide-field microscopes.


Asunto(s)
Embrión no Mamífero , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Proteínas Fluorescentes Verdes/genética , Aumento de la Imagen/instrumentación , Imagenología Tridimensional/instrumentación , Iluminación , Microscopía Confocal/instrumentación , Transgenes , Pez Cebra/embriología , Pez Cebra/genética
11.
Development ; 137(20): 3477-87, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20876657

RESUMEN

The posterior lateral line primordium (pLLp) migrates caudally, depositing neuromasts to establish the posterior lateral line system in zebrafish. A Wnt-dependent FGF signaling center at the leading end of the pLLp initiates the formation of `proneuromasts' by facilitating the reorganization of cells into epithelial rosettes and by initiating atoh1a expression. Expression of atoh1a gives proneuromast cells the potential to become sensory hair cells, and lateral inhibition mediated by Delta-Notch signaling restricts atoh1a expression to a central cell. We show that as atoh1a expression becomes established in the central cell, it drives expression of fgf10 and of the Notch ligand deltaD, while it inhibits expression of fgfr1. As a source of Fgf10, the central cell activates the FGF pathway in neighboring cells, ensuring that they form stable epithelial rosettes. At the same time, DeltaD activates Notch in neighboring cells, inhibiting atoh1a expression and ensuring that they are specified as supporting cells. When Notch signaling fails, unregulated atoh1a expression reduces Fgfr1 expression, eventually resulting in attenuated FGF signaling, which prevents effective maturation of epithelial rosettes in the pLLp. In addition, atoh1a inhibits e-cadherin expression, which is likely to reduce cohesion and contribute to fragmentation of the pLLp. Together, our observations reveal a genetic regulatory network that explains why atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the pLLp.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Redes Reguladoras de Genes/fisiología , Sistema de la Línea Lateral/embriología , Morfogénesis/fisiología , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Pez Cebra/embriología , Animales , Cadherinas/metabolismo , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Inmunohistoquímica , Hibridación in Situ , Sistema de la Línea Lateral/metabolismo , Proteínas de Pez Cebra/metabolismo
12.
Development ; 137(15): 2527-37, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20573700

RESUMEN

In the developing embryo, cell-cell signalling is necessary for tissue patterning and structural organization. During midline development, the notochord plays roles in the patterning of its surrounding tissues while forming the axial structure; however, how these patterning and structural roles are coordinated remains elusive. Here, we identify a mechanism by which Notch signalling regulates the patterning activities and structural integrity of the notochord. We found that Mind bomb (Mib) ubiquitylates Jagged 1 (Jag1) and is essential in the signal-emitting cells for Jag1 to activate Notch signalling. In zebrafish, loss- and gain-of-function analyses showed that Mib-Jag1-Notch signalling favours the development of non-vacuolated cells at the expense of vacuolated cells in the notochord. This leads to changes in the peri-notochordal basement membrane formation and patterning surrounding the muscle pioneer cells. These data reveal a previously unrecognized mechanism regulating the patterning and structural roles of the notochord by Mib-Jag1-Notch signalling-mediated cell-fate determination.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Unión al Calcio/metabolismo , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Notocorda/fisiología , Receptores Notch/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Células 3T3 , Animales , Células COS , Chlorocebus aethiops , Endocitosis , Proteína Jagged-1 , Ratones , Modelos Biológicos , Proteínas Serrate-Jagged , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo , Pez Cebra
13.
Cell Tissue Res ; 349(2): 483-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22628160

RESUMEN

The interstitial cells of Cajal (ICCs) are important mediators of gastrointestinal (GI) motility because of their role as pacemakers in the GI tract. In addition to their function, ICCs are also structurally distinct cells most easily identified by their ultra-structural features and expression of the tyrosine kinase receptor c-KIT. ICCs have been described in mammals, rodents, birds, reptiles, and amphibians, but there are no reports at the ultra-structural level of ICCs within the GI tract of an organism from the teleost lineage. We describe the presence of cells in the muscularis of the zebrafish intestine; these cells have similar features to ICCs in other vertebrates. The ICC-like cells are associated with the muscularis, are more electron-dense than surrounding smooth muscle cells, possess long cytoplasmic processes and mitochondria, and are situated opposing enteric nervous structures. In addition, immunofluorescent and immunoelectron-microscopic studies with antibodies targeting the zebrafish ortholog of a putative ICC marker, c-KIT (kita), showed c-kit immunoreactivity in zebrafish ICCs. Taken together, these data represent the first ultra-structural characterization of cells in the muscularis of the zebrafish Danio rerio and suggest that ICC differentiation in vertebrate evolution dates back to the teleost lineage.


Asunto(s)
Células Intersticiales de Cajal/ultraestructura , Intestinos/ultraestructura , Pez Cebra/anatomía & histología , Animales , Intestinos/citología , Microscopía Electrónica , Proteínas Proto-Oncogénicas c-kit/análisis
14.
Nat Cell Biol ; 7(11): 1106-12, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16228014

RESUMEN

Nrarp (Notch-regulated ankyrin repeat protein) is a small protein that has two ankyrin repeats. Although Nrarp is known to be an inhibitory component of the Notch signalling pathway that operates in different developmental processes, the in vivo roles of Nrarp have not been fully characterized. Here, we show that Nrarp is a positive regulator in the Wnt signalling pathway. In zebrafish, knockdown of Nrarp-a expression by an antisense morpholino oligonucleotide (MO) results in altered Wnt-signalling-dependent neural-crest-cell development. Nrarp stabilizes LEF1 protein, a pivotal transcription factor in the Wnt signalling cascade, by blocking LEF1 ubiquitination. In accordance with this, the knockdown phenotype of lef1 is similar to that of nrarp-a, at least in part, in its effect on the development of multiple tissues in zebrafish. Furthermore, activation of LEF1 does not affect Notch activity or vice versa. These findings reveal that Nrarp independently regulates canonical Wnt and Notch signalling by modulating LEF1 and Notch protein turnover, respectively.


Asunto(s)
Cresta Neural/citología , Cresta Neural/fisiología , Factores de Transcripción/fisiología , Proteínas de Xenopus/metabolismo , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Oligonucleótidos Antisentido/farmacología , Receptores Notch/fisiología , Transducción de Señal , Ubiquitina , Proteína Wnt1/fisiología , Proteínas de Xenopus/fisiología
15.
Elife ; 92020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33237853

RESUMEN

The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin. Polarization of lamellipodia extended by both superficial and deeper protoneuromast-forming cells depends on Fgf signaling. Removal of the overlying skin has similar effects on superficial and deep cells: lamellipodia are lost, blebs appear instead, and collective migration fails. When skinned embryos are embedded in Matrigel, basal and superficial lamellipodia are recovered; however, only the directionality of basal protrusions is recovered, and migration is not rescued. These observations support a key role played by superficial primordium cells and the skin in directed migration of the Posterior Lateral Line primordium.


Asunto(s)
Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Sistema de la Línea Lateral/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Movimiento Celular , Desarrollo Embrionario , Proteínas de Pez Cebra/genética
16.
Nat Biotechnol ; 38(11): 1337-1346, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32601431

RESUMEN

The contrast and resolution of images obtained with optical microscopes can be improved by deconvolution and computational fusion of multiple views of the same sample, but these methods are computationally expensive for large datasets. Here we describe theoretical and practical advances in algorithm and software design that result in image processing times that are tenfold to several thousand fold faster than with previous methods. First, we show that an 'unmatched back projector' accelerates deconvolution relative to the classic Richardson-Lucy algorithm by at least tenfold. Second, three-dimensional image-based registration with a graphics processing unit enhances processing speed 10- to 100-fold over CPU processing. Third, deep learning can provide further acceleration, particularly for deconvolution with spatially varying point spread functions. We illustrate our methods from the subcellular to millimeter spatial scale on diverse samples, including single cells, embryos and cleared tissue. Finally, we show performance enhancement on recently developed microscopes that have improved spatial resolution, including dual-view cleared-tissue light-sheet microscopes and reflective lattice light-sheet microscopes.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Microscopía , Animales , Encéfalo/diagnóstico por imagen , Caenorhabditis elegans/embriología , Línea Celular , Aprendizaje Profundo , Humanos , Ratones , Pez Cebra/embriología
17.
Dev Cell ; 4(1): 67-82, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12530964

RESUMEN

Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneural gene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. These observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell. This facilitates intramembranous cleavage of the remaining Notch receptor, release of the Notch intracellular fragment, and activation of target genes in neighboring cells.


Asunto(s)
Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas , Ubiquitina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Western Blotting , Diferenciación Celular , Endocitosis , Regulación de la Expresión Génica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Ligasas/química , Ligasas/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Neuronas/citología , Fenotipo , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch , Médula Espinal/embriología , Médula Espinal/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
18.
Biochem Biophys Res Commun ; 379(1): 22-6, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-19084503

RESUMEN

Transcripts of notch and its target genes have been detected in some differentiating neurons. However, the role of Notch in neuronal differentiation remains poorly defined. Here, we show that a subset of differentiating sensory neurons in the trigeminal ganglia express her4. Expression of her4 requires Notch signaling during neurogenesis but not during differentiation, when peripheral projections of the trigeminal ganglia are established. These projections develop poorly in her4 morphants. While many components of the canonical Notch signaling pathway are not required for late her4 expression or peripheral axon outgrowth in trigeminal neurons, simultaneous knock-down of Notch receptors prevents establishment of these peripheral projections. These observations suggest that Her4 and Notch play a role in peripheral outgrowth of sensory neurons.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Transcripción Genética , Ganglio del Trigémino/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Animales , Axones/metabolismo , Axones/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores Notch/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Curr Opin Genet Dev ; 14(4): 415-21, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15261658

RESUMEN

The StarLogo and NetLogo programming environments allow developmental biologists to build computer models of cell-cell interactions in an epithelium and visualize emergent properties of hypothetical genetic regulatory networks operating in the cells. These environments were used to explore alternative models that show how a posteriorizing morphogen gradient might define gene-expression domains along the rostral-caudal axis in the zebrafish neurectoderm. The models illustrate how a hypothetical genetic network based on auto-activation and cross-repression could lead to establishment of discrete non-overlapping gene-expression domains.


Asunto(s)
Tipificación del Cuerpo/fisiología , Ectodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Pez Cebra/embriología , Animales , Simulación por Computador , Morfogénesis
20.
Mech Dev ; 148: 69-78, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28460893

RESUMEN

A description of zebrafish posterior Lateral Line (pLL) primordium development at single cell resolution together with the dynamics of Wnt, FGF, Notch and chemokine signaling in this system has allowed us to develop a framework to understand the self-organization of cell fate, morphogenesis and migration during its early development. The pLL primordium migrates under the skin, from near the ear to the tip of the tail, periodically depositing neuromasts. Nascent neuromasts, or protoneuromasts, form sequentially within the migrating primordium, mature, and are deposited from its trailing end. Initially broad Wnt signaling inhibits protoneuromast formation. However, protoneuromasts form sequentially in response to FGF signaling, starting from the trailing end, in the wake of a progressively shrinking Wnt system. While proliferation adds to the number of cells, the migrating primordium progressively shrinks as its trailing cells stop moving and are deposited. As it shrinks, the length of the migrating primordium correlates with the length of the leading Wnt system. Based on these observations we show how measuring the rate at which the Wnt system shrinks, the proliferation rate, the initial size of the primordium, its speed, and a few additional parameters allows us to predict the pattern of neuromast formation and deposition by the migrating primordium in both wild-type and mutant contexts. While the mechanism that links the length of the leading Wnt system to that of the primordium remains unclear, we discuss how it might be determined by access to factors produced in the leading Wnt active zone that are required for collective migration of trailing cells. We conclude by reviewing how FGFs, produced in response to Wnt signaling in leading cells, help determine collective migration of trailing cells, while a polarized response to a self-generated chemokine gradient serves as an efficient mechanism to steer primordium migration along its relatively long journey.


Asunto(s)
Movimiento Celular/genética , Desarrollo Embrionario/genética , Morfogénesis/genética , Pez Cebra/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Embrión no Mamífero , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Vía de Señalización Wnt/genética , Pez Cebra/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA