Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314577

RESUMEN

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Asunto(s)
Decidua , Galectinas , Macrófagos , Preeclampsia , Remodelación Vascular , Preeclampsia/metabolismo , Preeclampsia/inmunología , Embarazo , Femenino , Animales , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Humanos , Decidua/metabolismo , Decidua/patología , Ratones Noqueados , Útero/metabolismo , Útero/irrigación sanguínea , Modelos Animales de Enfermedad , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Estudios Retrospectivos , Ratones Endogámicos C57BL , Antígenos CD11
2.
Mol Cell Proteomics ; 22(4): 100526, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889440

RESUMEN

Successful placentation requires delicate communication between the endometrium and trophoblasts. The invasion and integration of trophoblasts into the endometrium during early pregnancy are crucial to placentation. Dysregulation of these functions is associated with various pregnancy complications, such as miscarriage and preeclampsia. The endometrial microenvironment has an important influence on trophoblast cell functions. The precise effect of the endometrial gland secretome on trophoblast functions remains uncertain. We hypothesized that the hormonal environment regulates the miRNA profile and secretome of the human endometrial gland, which subsequently modulates trophoblast functions during early pregnancy. Human endometrial tissues were obtained from endometrial biopsies with written consent. Endometrial organoids were established in matrix gel under defined culture conditions. They were treated with hormones mimicking the environment of the proliferative phase (Estrogen, E2), secretory phase (E2+Progesterone, P4), and early pregnancy (E2+P4+Human Chorionic Gonadotropin, hCG). miRNA-seq was performed on the treated organoids. Organoid secretions were also collected for mass spectrometric analysis. The viability and invasion/migration of the trophoblasts after treatment with the organoid secretome were determined by cytotoxicity assay and transwell assay, respectively. Endometrial organoids with the ability to respond to sex steroid hormones were successfully developed from human endometrial glands. By establishing the first secretome profiles and miRNA atlas of these endometrial organoids to the hormonal changes followed by trophoblast functional assays, we demonstrated that sex steroid hormones modulate aquaporin (AQP)1/9 and S100A9 secretions through miR-3194 activation in endometrial epithelial cells, which in turn enhanced trophoblast migration and invasion during early pregnancy. By using a human endometrial organoid model, we demonstrated for the first time that the hormonal regulation of the endometrial gland secretome is crucial to regulating the functions of human trophoblasts during early pregnancy. The study provides the basis for understanding the regulation of early placental development in humans.


Asunto(s)
MicroARNs , Trofoblastos , Femenino , Humanos , Embarazo , Endometrio/metabolismo , Hormonas Esteroides Gonadales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Organoides/metabolismo , Placenta/metabolismo , Secretoma , Trofoblastos/metabolismo , Acuaporinas/metabolismo
3.
BMC Genomics ; 24(1): 618, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853336

RESUMEN

BACKGROUND: Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS: Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION: Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.


Asunto(s)
Placenta , Trofoblastos , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Decidua/metabolismo , Diferenciación Celular , Organoides , Células Asesinas Naturales/metabolismo , Movimiento Celular
4.
J Cell Sci ; 133(14)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513821

RESUMEN

Decidual macrophages constitute 20-30% of the total leukocytes in the uterus of pregnant women, regulating the maternal immune tolerance and placenta development. Abnormal number or activities of decidual macrophages (dMs) are associated with fetal loss and pregnancy complications, such as preeclampsia. Monocytes differentiate into dMs in a decidua-specific microenvironment. Despite their important roles in pregnancy, the exact factors that regulate the differentiation into dMs remain unclear. Glycodelin-A (PAEP, hereafter referred to as GdA) is a glycoprotein that is abundantly present in the decidua, and plays an important role in fetomaternal defense and placental development. It modulates the differentiation and activity of several immune cell types residing in the decidua. In this study, we demonstrated that GdA induces the differentiation of human monocytes into dM-like phenotypes in terms of transcriptome, cell surface marker expression, secretome, and regulation of trophoblast and endothelial cell functions. We found that Sialic acid-binding Ig-like lectin 7 (Siglec-7) mediates the binding and biological actions of GdA in a sialic acid-dependent manner. We, therefore, suggest that GdA, induces the polarization of monocytes into dMs to regulate fetomaternal tolerance and placental development.


Asunto(s)
Monocitos , Placenta , Antígenos de Diferenciación Mielomonocítica , Femenino , Glicodelina , Humanos , Lectinas , Macrófagos , Fenotipo , Embarazo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
5.
Reprod Biol Endocrinol ; 20(1): 120, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35964080

RESUMEN

During implantation, a symphony of interaction between the trophoblast originated from the trophectoderm of the implanting blastocyst and the endometrium leads to a successful pregnancy. Defective interaction between the trophoblast and endometrium often results in implantation failure, pregnancy loss, and a number of pregnancy complications. Owing to ethical concerns of using in vivo approaches to study human embryo implantation, various in vitro culture models of endometrium were established in the past decade ranging from two-dimensional cell-based to three-dimensional extracellular matrix (ECM)/tissue-based culture systems. Advanced organoid systems have also been established for recapitulation of different cellular components of the maternal-fetal interface, including the endometrial glandular organoids, trophoblast organoids and blastoids. However, there is no single ideal model to study the whole implantation process leaving more research to be done pursuing the establishment of a comprehensive in vitro model that can recapitulate the biology of trophoblast-endometrium interaction during early pregnancy. This would allow us to have better understanding of the physiological and pathological process of trophoblast-endometrium interaction during implantation.


Asunto(s)
Implantación del Embrión , Trofoblastos , Blastocisto , Implantación del Embrión/fisiología , Embrión de Mamíferos , Endometrio , Femenino , Humanos , Embarazo , Trofoblastos/fisiología
6.
J Nanobiotechnology ; 20(1): 86, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35180876

RESUMEN

BACKGROUND: The maternal immune system needs to tolerate the semi-allogeneic fetus in pregnancy. The adaptation occurs locally at the maternal-fetal interface as well as systemically through the maternal circulation. Failure to tolerate the paternal antigens may result in pregnancy complications, such as pregnancy loss and pre-eclampsia. However, the mechanism that regulates maternal immune tolerance, especially at the systemic level, is still an enigma. Here we report that the first-trimester placenta-derived exosomes (pEXOs) contribute to maternal immune tolerance by reprogramming the circulating monocytes. RESULTS: pEXOs predominantly target monocytes and pEXO-educated monocytes exhibit an immunosuppressive phenotype as demonstrated by reduced expression of marker genes for monocyte activation, T-cell activation and antigen-process/presentation at the transcriptomic level. They also have a greater propensity towards M2 polarization when compared to the monocytes without pEXO treatment. The inclusion of pEXOs in a monocyte-T-cell coculture model significantly reduces proliferation of the T helper cells and cytotoxic T cells and elevates the expansion of regulatory T cells. By integrating the microRNAome of pEXO and the transcriptomes of pEXO-educated monocytes as well as various immune cell functional assays, we demonstrate that the pEXO-derived microRNA miR-29a-3p promotes the expression of programmed cell death ligand-1, a well-known surface receptor that suppresses the adaptive immune system, by down-regulation of phosphatase and tensin homolog in monocytes. CONCLUSIONS: This is the first report to show how human pEXO directly regulates monocyte functions and its molecular mechanism during early pregnancy. The results uncover the importance of pEXO in regulating the maternal systemic immune response during early pregnancy by reprogramming circulating monocytes. The study provides the basis for understanding the regulation of maternal immune tolerance to the fetal allograft.


Asunto(s)
Exosomas , Monocitos , Técnicas de Cocultivo , Femenino , Humanos , Tolerancia Inmunológica , Placenta/metabolismo , Embarazo
7.
J Assist Reprod Genet ; 39(3): 739-746, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35141813

RESUMEN

PURPOSE: This study aimed to evaluate the value of long-read sequencing for preimplantation haplotype linkage analysis. METHODS: The genetic material of the three ß-thalassemia mutation carrier couples was sequenced using single-molecule real-time sequencing in the 7.7-kb region of the HBB gene and a 7.4-kb region that partially overlapped with it to detect the presence of 17 common HBB gene mutations in the Chinese population and the haplotypes formed by the continuous array of single-nucleotide polymorphisms linked to these mutations. By using the same method to analyze multiple displacement amplification products of embryos from three families and comparing the results with those of the parents, it could be revealed whether the embryos carry disease-causing mutations without the need for a proband. RESULTS: The HBB gene mutations of the three couples were accurately detected, and the haplotype linked to the pathogenic site was successfully obtained without the need for a proband. A total of 68.75% (22/32) of embryos from the three families successfully underwent haplotype linkage analysis, and the results were consistent with the results of NGS-based mutation site detection. CONCLUSION: This study supports long-read sequencing as a potential tool for preimplantation haplotype linkage analysis.


Asunto(s)
Diagnóstico Preimplantación , Talasemia beta , Femenino , Ligamiento Genético/genética , Pruebas Genéticas/métodos , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación/genética , Embarazo , Diagnóstico Preimplantación/métodos , Talasemia beta/diagnóstico , Talasemia beta/genética , Talasemia beta/patología
8.
Exp Cell Res ; 388(1): 111718, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31874176

RESUMEN

Successful implantation happens only when the development of a competent blastocyst synchronized with the differentiation of a receptive uterus. The exact mechanism affecting embryo implantation competency is still unclear. Previous data from our laboratory showed that several members of the let-7 family were up-regulated in the implanting dormant blastocysts and prohibited embryo activation through down-regulation integrin-ß3. However, how the mir-let-7 family is regulated is still a question. In this study, the in vitro co-culture model was applied to imitate implantation. Human embryo surrogate Jeg-3 spheroids and endometrium epithelial cells Ishikawa were used. The following views were demonstrated. Firstly,Wnt/ß-catenin signaling is essential for Jeg-3 spheroids implantation. Secondly, mir-let-7a is repressed by Wnt signaling, and low let-7a is beneficial for spheroids attachment and outgrowth. Third, in contrast with let-7a, lin28a is up-regulated by Wnt and promotes attachment and outgrowth. Lastly, the function of Wnt in embryo surrogate spheroids in implantation is mediated through lin28a/let-7a axis. In summary, our findings suggest Wnt/ß-catenin signaling strength human embryo surrogate spheroids implanting potential through regulation lin28a/let-7a axis.


Asunto(s)
Endometrio/citología , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética , Esferoides Celulares/metabolismo , Trofoblastos/citología , Vía de Señalización Wnt , Línea Celular Tumoral , Técnicas de Cocultivo , Implantación del Embrión/genética , Endometrio/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Esferoides Celulares/citología , Trofoblastos/metabolismo
9.
BMC Pregnancy Childbirth ; 21(1): 266, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33784964

RESUMEN

BACKGROUND: To assess the indications and complications of late amniocentesis and the advanced genetic test results in a tertiary university fetal medical medicine unit. METHODS: In this retrospective study, women that underwent amniocentesis at 24+ 0 to 39+ 4 weeks, between January 2014 and December 2019, were recruited. Indications, complications, genetic test results, and pregnancy outcomes were reported for each pregnancy and compared with those who underwent the traditional amniocentesis at 16+ 0 to 23+ 6 weeks (control group). Information was retrieved from patient medical records, checked by research staff, and analyzed. RESULTS: Of the 1287 women (1321 fetuses) included in the late amniocentesis group, late detected sonographic abnormalities (85.5%) were the most common indication. The overall incidence of preterm birth and intrauterine demise after amniocentesis were 2.5 and 1.3%, respectively. Sixty-nine fetuses with aneuploidy (5.3%) and seventy-two fetuses with pathogenic copy number variations (5.5%) were identified by chromosomal microarray analysis. The maximal diagnostic yield (70%) was in the subgroup of fetuses with the abnormal diagnostic test results, followed by abnormal NIPT results (35.7%) and multiple abnormalities (23.8%). And 35.4% of the pregnancies were finally terminated. CONCLUSIONS: Due to the high detection rates of advanced genetic technologies and the safety of the invasive procedure (3.9% vs 4.0%), it is reasonable to recommend late amniocentesis as an effective and reliable method to detect late-onset fetal abnormalities. However, chromosomal microarray and whole-exome sequencing may result in uncertain results like variants of uncertain significance. Comprehensive genetic counseling is necessary.


Asunto(s)
Amniocentesis/estadística & datos numéricos , Aneuploidia , Anomalías Congénitas/diagnóstico , Pruebas Genéticas/estadística & datos numéricos , Ultrasonografía Prenatal/estadística & datos numéricos , Aborto Eugénico/estadística & datos numéricos , Adolescente , Adulto , Edad de Inicio , Amniocentesis/efectos adversos , China/epidemiología , Anomalías Congénitas/epidemiología , Anomalías Congénitas/genética , Femenino , Asesoramiento Genético , Humanos , Persona de Mediana Edad , Embarazo , Reproducibilidad de los Resultados , Estudios Retrospectivos , Centros de Atención Terciaria , Factores de Tiempo , Secuenciación del Exoma , Adulto Joven
10.
Lab Invest ; 100(7): 1014-1025, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32205858

RESUMEN

Glycodelin is a major glycoprotein expressed in reproductive tissues, like secretory and decidualized endometrium. It has several reproduction related functions that are dependent on specific glycosylation, but it has also been found to drive differentiation of endometrial carcinoma cells toward a less malignant phenotype. Here we aimed to elucidate whether the glycosylation and function of glycodelin is altered in endometrial carcinoma as compared with a normal endometrium. We carried out glycan structure analysis of glycodelin expressed in HEC-1B human endometrial carcinoma cells (HEC-1B Gd) by mass spectrometry glycomics strategies. Glycans of HEC-1B Gd were found to comprise a typical mixture of high-mannose, hybrid, and complex-type N-glycans, often containing undecorated LacNAc (Galß1-4GlcNAc) antennae. However, several differences, as compared with previously reported glycan structures of normal human decidualized endometrium-derived glycodelin isoform, glycodelin-A (GdA), were also found. These included a lower level of sialylation and more abundant poly-LacNAc antennae, some of which are fucosylated. This allowed us to select lectins that showed different binding to these classes of glycodelin. Despite the differences in glycosylation between HEC-1B Gd and GdA, both showed similar inhibitory activity on trophoblast cell invasion and peripheral blood mononuclear cell proliferation. For the detection of cancer associated glycodelin, we established a novel in situ proximity-ligation based histochemical staining method using a specific glycodelin antibody and UEAI lectin. We found that the UEAI reactive glycodelin was abundant in endometrial carcinoma, but virtually absent in normal endometrial tissue even when glycodelin was strongly expressed. In conclusion, we established a histochemical staining method for the detection of endometrial carcinoma-associated glycodelin and showed that this specific glycodelin is exclusively expressed in cancer, not in normal endometrium. Similar methods can be used for studies of other glycoproteins.


Asunto(s)
Neoplasias Endometriales , Glicodelina , Neoplasias Uterinas , Secuencia de Carbohidratos , Línea Celular Tumoral , Neoplasias Endometriales/química , Neoplasias Endometriales/metabolismo , Femenino , Glicodelina/análisis , Glicodelina/química , Glicodelina/metabolismo , Glicómica , Glicosilación , Humanos , Lectinas/metabolismo , Espectrometría de Masas , Placenta/química , Embarazo , Neoplasias Uterinas/química , Neoplasias Uterinas/metabolismo
11.
Stem Cells ; 37(11): 1455-1466, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31414525

RESUMEN

Human endometrium undergoes cycles of proliferation and differentiation throughout the reproductive years of women. The endometrial stem/progenitor cells contribute to this regenerative process. They lie in the basalis layer of the endometrium next to the myometrium. We hypothesized that human myometrial cells provide niche signals regulating the activities of endometrial mesenchymal stem-like cells (eMSCs). In vitro coculture of myometrial cells enhanced the colony-forming and self-renewal ability of eMSCs. The cocultured eMSCs retained their multipotent characteristic and exhibited a greater total cell output when compared with medium alone culture. The expression of active ß-catenin in eMSCs increased significantly after coculture with myometrial cells, suggesting activation of WNT/ß-catenin signaling. Secretory factors in spent medium from myometrial cell culture produced the same stimulatory effects on eMSCs. The involvement of WNT/ß-catenin signaling in self-renewal of eMSCs was confirmed with the use of WNT activator (Wnt3A conditioned medium) and WNT inhibitors (XAV939 and inhibitor of Wnt Production-2 [IWP-2]). The myometrial cells expressed more WNT5A than other WNT ligands. Recombinant WNT5A stimulated whereas anti-WNT5A antibody suppressed the colony formation, self-renewal, and T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcriptional activities of eMSCs. Moreover, eMSCs expressed FZD4 and LRP5. WNT5A is known to activate the canonical WNT signaling in the presence of these receptor components. WNT antagonist, DKK1, binds to LRP5/6. Consistently, DKK1 treatment nullified the stimulatory effect of myometrial cell coculture. In conclusion, our findings show that the myometrial cells are niche components of eMSCs, modulating the self-renewal activity of eMSCs by WNT5A-dependent activation of WNT/ß-catenin signaling. Stem Cells 2019;37:1455-1466.


Asunto(s)
Cateninas/metabolismo , Endometrio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Miometrio/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Adulto , Cateninas/genética , Células Cultivadas , Endometrio/citología , Endometrio/efectos de los fármacos , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Silenciador del Gen/fisiología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Miometrio/citología , Miometrio/efectos de los fármacos , Proteínas Wnt/genética , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , Proteína Wnt-5a/genética
12.
Andrologia ; 52(5): e13565, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32187723

RESUMEN

Platelet-activating factor (PAF) affects capacitation, acrosome reaction and fertilisation potential of spermatozoa. This study investigated the underlying mechanism(s) through which PAF regulated sperm function. Our data demonstrated that PAF dose-dependently induced, whilst lyso-PAF (PAF precursor) showed no effect on acrosome reaction of capacitated human spermatozoa. Treatment with PAF for 90 min enhanced tyrosine phosphorylation and expression of extracellular signal-regulated protein kinases (ERK) 1 and 2 in human spermatozoa. Moreover, pre-treatment with the ERK inhibitor U0126 significantly and dose-dependently suppressed PAF-induced acrosome reaction. Therefore, PAF may be actively involved in the modulation of sperm acrosome reaction by interacting with ERK. The role of PAF in fertilisation warrants further investigation.


Asunto(s)
Reacción Acrosómica/efectos de los fármacos , Infertilidad Masculina/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor de Activación Plaquetaria/farmacología , Butadienos/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Masculino , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nitrilos/farmacología , Factor de Activación Plaquetaria/uso terapéutico , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos
13.
Mol Hum Reprod ; 25(8): 458-470, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31194867

RESUMEN

Human spermatozoa can fertilize an oocyte only after post-testicular maturation and capacitation. These processes involve dynamic modification and reorganization of the sperm plasma membrane, which allow them to bind to the zona pellucida (ZP) of the oocyte. Defective sperm-ZP binding is one of the major causes of male subfertility. Galectin-3 is a secretory lectin in human seminal plasma well known for its action on cell adhesion. The aim of this study was to determine the role of galectin-3 in spermatozoa-ZP interaction and its association with fertilization rate in clinical assisted reproduction. Our studies revealed that the acrosomal region of ejaculated and capacitated spermatozoa possess strong galectin-3 immunoreactivity, which is much stronger than that of epididymal spermatozoa. Expression of galectin-3 can also be detected on seminal plasma-derived extracellular vesicles (EVs) and can be transferred to the sperm surface. Blocking of sperm surface galectin-3 function by antibody or carbohydrate substrate reduced the ZP-binding capacity of spermatozoa. Purified galectin-3 is capable of binding to ZP, indicating that galectin-3 may serve as a cross-linking bridge between ZP glycans and sperm surface glycoproteins. Galectin-3 levels in seminal plasma-derived EVs were positively associated with fertilization rates. These results suggest that galectin-3 in EVs is transferred to the sperm surface during post-testicular maturation and plays a crucial role in spermatozoa-ZP binding after capacitation. Reduced galectin-3 expression in seminal plasma-derived EVs may be a cause behind a low fertilization rate. Further studies with more clinical samples are required to confirm the relationship between galectin-3 levels and IVF outcomes.


Asunto(s)
Fertilización/fisiología , Galectina 3/metabolismo , Zona Pelúcida/metabolismo , Reacción Acrosómica/genética , Reacción Acrosómica/fisiología , Adhesión Celular/fisiología , Fertilización/genética , Galectina 3/genética , Humanos , Masculino , Oocitos/metabolismo , Semen/metabolismo , Capacitación Espermática/fisiología , Interacciones Espermatozoide-Óvulo/genética , Interacciones Espermatozoide-Óvulo/fisiología , Espermatozoides/metabolismo
14.
Hum Reprod ; 34(4): 689-701, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597092

RESUMEN

STUDY QUESTION: Does glycodelin-A (GdA) induce conversion of human peripheral blood CD16-CD56bright natural killer (NK) cells to decidual NK (dNK) cells to facilitate placentation? SUMMARY ANSWER: GdA binds to blood CD16-CD56bright NK cells via its sialylated glycans and converts them to a dNK-like cells, which in turn regulate endothelial cell angiogenesis and trophoblast invasion via vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein 1 (IGFBP-1) secretion, respectively. WHAT IS KNOWN ALREADY: dNK cells are the most abundant leucocyte population in the decidua. These cells express CD16-CD56bright phenotype. Peripheral blood CD16-CD56bright NK cells and hematopoietic precursors have been suggested to be capable of differentiating towards dNK cells upon exposure to the decidual microenvironment. These cells regulate trophoblast invasion during spiral arteries remodelling and mediate homoeostasis and functions of the endothelial cells. GdA is an abundant glycoprotein in the human decidua with peak expression between the 6th and 12th week of gestation, suggesting a role in early pregnancy. Indeed, GdA interacts with and modulates functions and differentiation of trophoblast and immune cells in the human feto-maternal interface. Aberrant GdA expression during pregnancy is associated with unexplained infertility, pregnancy loss and pre-eclampsia. STUDY DESIGN, SIZE, DURATION: CD16+CD56dim, CD16-CD56bright and dNK cells were isolated from human peripheral blood and decidua tissue, respectively, by immuno-magnetic beads or fluorescence-activated cell sorting. Human extravillous trophoblasts were isolated from first trimester placental tissue after termination of pregnancy. Biological activities of the cells were studied after treatment with GdA at a physiological dose of 5 µg/mL. GdA was purified from human amniotic fluid by immuno-affinity chromatography. PARTICIPANTS/MATERIALS, SETTING, METHODS: Expression of VEGF, CD9, CD49a, CD151 and CD158a in the cells were determined by flow cytometry. Angiogenic proteins in the spent media of NK cells were determined by cytokine array and ELISA. Blocking antibodies were used to study the functions of the identified angiogenic proteins. Endothelial cell angiogenesis was determined by tube formation and trans-well migration assays. Cell invasion and migration were determined by trans-well invasion/migration assay. Binding of normal and de-sialylated GdA, and expression of L-selectin and siglec-7 on the NK cells were analysed by flow cytometry. The association between GdA and L-selectin on NK cells was confirmed by immunoprecipitation. Extracellular signal-regulated protein kinases (ERK) activation was determined by Western blotting and functional assays. MAIN RESULTS AND THE ROLE OF CHANCE: GdA treatment enhanced the expression of dNK cell markers CD9 and CD49a and the production of the functional dNK secretory product VEGF in the peripheral blood CD16-CD56bright NK cells. The spent media of GdA-treated CD16-CD56bright NK cells promoted tube formation of human umbilical vein endothelial cells and invasiveness of trophoblasts. These stimulatory effects were mediated by the stimulatory activities of GdA on an ERK-activation dependent production of VEGF and IGFBP-1 by the NK cells. GdA had a stronger binding affinity to the CD16-CD56bright NK cells as compared to the CD16+CD56dim NK cells. This GdA-NK cell interaction was reduced by de-sialylation. GdA interacted with L-selectin, expressed only in the CD16-CD56bright NK cells, but not in the CD16+CD56dim NK cells. Anti-L-selectin functional blocking antibody suppressed the binding and biological activities of GdA on the NK cells. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Some of the above findings are based on a small sample size of peripheral blood CD16-CD56bright NK cells. These results need to be confirmed with human primary dNK cells. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study on the biological role of GdA on conversion of CD16-CD56bright NK cells to dNK-like cells. Further investigation on the glycosylation and functions of GdA will enhance our understanding on human placentation and placenta-associated complications with altered NK cell biology. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Hong Kong Research Grant Council Grant 17122415, Sanming Project of Medicine in Shenzhen, the Finnish Cancer Foundation, Sigrid Jusélius Foundation and the Finnish Society of Clinical Chemistry. The authors have no competing interests to declare.


Asunto(s)
Antígeno CD56/metabolismo , Decidua/citología , Decidua/metabolismo , Glicodelina/farmacología , Células Asesinas Naturales/metabolismo , Fenotipo , Receptores de IgG/metabolismo , Líquido Amniótico/química , Donantes de Sangre , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Femenino , Proteínas Ligadas a GPI/metabolismo , Glicodelina/aislamiento & purificación , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Selectina L/metabolismo , Neovascularización Fisiológica , Embarazo , Primer Trimestre del Embarazo , Transducción de Señal/efectos de los fármacos , Trofoblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Hum Reprod ; 32(4): 733-742, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28175305

RESUMEN

Study question: Are multimeric sperm plasma membrane protein complexes, ERp57 and sperm surface thiol content involved in human spermatozoa-zona pellucida (ZP) interaction? Summary answer: ERp57 is a component of a multimeric spermatozoa-ZP receptor complex involved in regulation of human spermatozoa-ZP binding via up-regulation of sperm surface thiol content. What is known already: A spermatozoon acquires its fertilization capacity within the female reproductive tract by capacitation. Spermatozoa-ZP receptor is suggested to be a composite structure that is assembled into a functional complex during capacitation. Sperm surface thiol content is elevated during capacitation. ERp57 is a protein disulphide isomerase that modulates the thiol-disulphide status of proteins. Study design, size, duration: The binding ability and components of protein complexes in extracted membrane protein fractions of spermatozoa were studied. The roles of capacitation, thiol-disulphide reagent treatments and ERp57 on sperm functions and sperm surface thiol content were assessed. Participants/materials, setting, methods: Spermatozoa were obtained from semen samples from normozoospermic men. Human oocytes were obtained from an assisted reproduction programme. Blue native polyacrylamide gel electrophoresis, western ligand blotting and mass spectrometry were used to identify the components of solubilized ZP/ZP3-binding complexes. The localization and expression of sperm surface thiol and ERp57 were studied by immunostaining and sperm surface protein biotinylation followed by western blotting. Sperm functions were assessed by standard assays. Main results and the role of chance: Several ZP-binding complexes were isolated from the cell membrane of capacitated spermatozoa. ERp57 was a component of one of these complexes. Capacitation significantly increased the sperm surface thiol content, acrosomal thiol distribution and ERp57 expression on sperm surface. Sperm surface thiol and ERp57 immunoreactivity were localized to the acrosomal region of spermatozoa, a region responsible for ZP-binding. Up-regulation of the surface thiol content or ERp57 surface expression in vitro stimulated ZP-binding capacity of human spermatozoa. Blocking of ERp57 function by specific antibody or inhibitors against ERp57 reduced the surface thiol content and ZP-binding capacity of human spermatozoa. Large scale data: N/A. Limitations, reasons for caution: The mechanisms by which up-regulation of surface thiol content stimulates spermatozoa-ZP binding have not been depicted. Wider implications of the findings: Thiol-disulphide exchange is a crucial event in capacitation. ERp57 modulates the event and the subsequent fertilization process. Modulation of the surface thiol content of the spermatozoa of subfertile men may help to increase fertilization rate in assisted reproduction. Study funding/competing interest(s): This work was supported by The Hong Kong Research Grant Council Grant HKU764611 and HKU764512M to P.C.N.C. The authors have no competing interests.


Asunto(s)
Proteína Disulfuro Isomerasas/fisiología , Interacciones Espermatozoide-Óvulo , Compuestos de Sulfhidrilo/metabolismo , Acrosoma/metabolismo , Femenino , Humanos , Masculino , Proteína Disulfuro Isomerasas/genética , Capacitación Espermática , Espermatozoides/metabolismo , Compuestos de Sulfhidrilo/análisis , Regulación hacia Arriba , Zona Pelúcida/metabolismo
16.
Semin Cell Dev Biol ; 30: 86-95, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24747367

RESUMEN

Mammalian oocytes are surrounded by an acellular zona pellucida (ZP). Fertilization begins when a capacitated spermatozoon binds to the ZP. Defective sperm-ZP interaction is a cause of male infertility and reduced fertilization rates in clinical assisted reproduction treatment. Despite the importance of spermatozoa-ZP binding, the mechanisms and regulation of the interaction are unclear partly due to the failure in the identification of ZP receptor on spermatozoa. Most of the previous studies assumed that the sperm ZP receptor is a single molecular species, and a number of potential candidates had been suggested. Yet none of them can be considered as the sole sperm ZP receptor. Accumulated evidence suggested that the sperm ZP receptor is a dynamic multi-molecular structure requiring coordinated action of different proteins that are assembled into a functional complex during post-testicular maturation and capacitation. The complex components may include carbohydrate-binding, protein-binding and acrosomal matrix proteins which work as a suite to mediate spermatozoa-ZP interaction. This article aims to review the latest insights in the identification of the sperm ZP receptor. Continued investigation of the area will provide considerable understanding of the regulation of fertilization that will be useful for practical application in human contraception and reproductive medicine.


Asunto(s)
Proteínas del Huevo/fisiología , Glicoproteínas de Membrana/fisiología , Receptores de Superficie Celular/fisiología , Espermatozoides/metabolismo , Animales , Glicosilación , Humanos , Masculino , Unión Proteica , Procesamiento Proteico-Postraduccional , Capacitación Espermática , Zona Pelúcida/fisiología , Glicoproteínas de la Zona Pelúcida
17.
Mol Hum Reprod ; 21(6): 516-26, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25858480

RESUMEN

Oxidative damage by reactive oxygen species (ROS) is a major cause of sperm dysfunction. Excessive ROS generation reduces fertilization and enhances DNA damage of spermatozoa. Interaction between spermatozoa and oviductal epithelial cells improves the fertilizing ability of and reduces chromatin damage in spermatozoa. Our previous data showed that oviductal epithelial cell membrane proteins interact with the human spermatozoa and protect them from ROS-induced reduction in sperm motility, membrane integrity and DNA integrity. Sperm fucosyltransferase-5 (sFUT5) is a membrane carbohydrate-binding protein on human spermatozoa. In this study, we demonstrate for the first time that sFUT5 is involved in human spermatozoa-oviduct interaction and the beneficial effects of such interaction on the fertilizing ability of human spermatozoa. Anti-sFUT5 antibody-treated spermatozoa had reduced binding to oviductal membrane proteins. It is consistent with the result that affinity-purified sFUT5 is bound to the epithelial lining of human oviduct and to the immortalized human oviductal epithelial cell line, OE-E6/E7. Pretreatment of spermatozoa with anti-sFUT5 antibody and oviductal membrane proteins with sFUT5 suppressed the protective action of oviductal membrane proteins against ROS/cryopreservation-induced oxidative damage in spermatozoa. Asialofetuin, a reported sFUT5 substrate, can partly mimic the protective effect of oviductal epithelial cell membrane proteins on sperm motility, membrane and DNA integrity. The results enhance our understanding on the protective mechanism of oviduct on sperm functions.


Asunto(s)
Trompas Uterinas/enzimología , Fucosiltransferasas/fisiología , Estrés Oxidativo , Comunicación Celular , Criopreservación , Fragmentación del ADN , Células Epiteliales/enzimología , Femenino , Humanos , Masculino , Especies Reactivas de Oxígeno , Preservación de Semen , Motilidad Espermática , Espermatozoides/citología , Espermatozoides/enzimología , Espermatozoides/fisiología
18.
Hum Reprod ; 30(10): 2263-74, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26307092

RESUMEN

STUDY QUESTION: What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? SUMMARY ANSWER: sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. WHAT IS KNOWN ALREADY: sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. STUDY DESIGN, SIZE, DURATION: Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. PARTICIPANTS/MATERIALS, SETTING, METHODS: Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. MAIN RESULTS AND THE ROLE OF CHANCE: sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized macrophages showed enhanced phagocytic activity. They also had higher expression and activity of indoleamine 2,3-dioxygenase 1, a phenotypic marker of decidual macrophages, which inhibited proliferation of autologous T-cells via induction of G0/G1 cell cycle arrest. In addition, sHLAG5-polarized macrophages had an increased secretion of interleukin-6 and C-X-C motif ligand 1, which inhibited interferon-γ production in T-cells and induction of trophoblast invasion, respectively. LIMITATIONS, REASONS FOR CAUTION: Most information on the phenotypes and biological activities of human decidual macrophages are based on past literatures. A direct comparison between sHLAG5-polarized macrophages and primary decidual macrophages is required to verify the present observations. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study on the role of sHLAG5 in macrophage differentiation. Further study on the mechanism that regulates the differentiation process of macrophages would enhance our understanding on the physiology of early pregnancy. STUDY FUNDING/COMPETING INTERESTS: This work was supported in part by the Hong Kong Research Grant Council Grant HKU774212 and the University of Hong Kong Grant 201309176126. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER: Nil.


Asunto(s)
Antígenos HLA-G/metabolismo , Macrófagos/citología , Adolescente , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígeno B7-2/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Citocinas/metabolismo , Decidua/metabolismo , Escherichia coli/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Macrófagos/metabolismo , Persona de Mediana Edad , Monocitos/citología , Fagocitosis , Fenotipo , Preeclampsia/metabolismo , Embarazo , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/metabolismo , Linfocitos T/citología , Trofoblastos/metabolismo , Adulto Joven
19.
Proc Natl Acad Sci U S A ; 109(2): 490-4, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22203953

RESUMEN

In mammals, the sperm deliver mRNA of unknown function into the oocytes during fertilization. The role of sperm microRNAs (miRNAs) in preimplantation development is unknown. miRNA profiling identified six miRNAs expressed in the sperm and the zygotes but not in the oocytes or preimplantation embryos. Sperm contained both the precursor and the mature form of one of these miRNAs, miR-34c. The absence of an increased level of miR-34c in zygotes derived from α-amanitin-treated oocytes and in parthenogenetic oocytes supported a sperm origin of zygotic miR-34c. Injection of miR-34c inhibitor into zygotes inhibited DNA synthesis and significantly suppressed first cleavage division. A 3' UTR luciferase assay and Western blotting demonstrated that miR-34c regulates B-cell leukemia/lymphoma 2 (Bcl-2) expression in the zygotes. Coinjection of anti-Bcl-2 antibody in zygotes partially reversed but injection of Bcl-2 protein mimicked the effect of miR-34c inhibition. Oocyte activation is essential for the miR-34c action in zygotes, as demonstrated by a decrease in 3'UTR luciferase reporter activity and Bcl-2 expression after injection of precursor miR-34c into parthenogenetic oocytes. Our findings provide evidence that sperm-borne miR-34c is important for the first cell division via modulation of Bcl-2 expression.


Asunto(s)
Fase de Segmentación del Huevo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Espermatozoides/química , Alfa-Amanitina/farmacología , Animales , Western Blotting , Replicación del ADN/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Luciferasas , Masculino , Ratones
20.
Front Immunol ; 15: 1378863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765018

RESUMEN

Background: At menstruation, the functional layer of the human endometrium sheds off due to the trigger of the release of inflammatory factors, including interleukin 6 (IL-6), as a result of a sharp decline in progesterone levels, leading to tissue breakdown and bleeding. The endometrial mesenchymal stem-like cells (CD140b+CD146+ eMSC) located in the basalis are responsible for the cyclical regeneration of the endometrium after menstruation. Endometrial cells from the menstruation phase have been proven to secrete a higher amount of IL-6 and further enhance the self-renewal and clonogenic activity of eMSC. However, the IL-6-responsive mechanism remains unknown. Thus, we hypothesized that IL-6 secreted from niche cells during menstruation regulates the proliferation and self-renewal of eMSC through the WNT/ß-catenin signaling pathway. Methods: In this study, the content of IL-6 across the menstrual phases was first evaluated. Coexpression of stem cell markers (CD140b and CD146) with interleukin 6 receptor (IL-6R) was confirmed by immunofluorescent staining. In vitro functional assays were conducted to investigate the effect of IL-6 on the cell activities of eMSC, and the therapeutic role of these IL-6- and WNT5A-pretreated eMSC on the repair of injured endometrium was observed using an established mouse model. Results: The endometrial cells secrete a high amount of IL-6 under hypoxic conditions, which mimic the physiological microenvironment in the menstruation phase. Also, the expression of IL-6 receptors was confirmed in our eMSC, indicating their capacity to respond to IL-6 in the microenvironment. Exogenous IL-6 can significantly enhance the self-renewal, proliferation, and migrating capacity of eMSC. Activation of the WNT/ß-catenin signaling pathway was observed upon IL-6 treatment, while suppression of the WNT/ß-catenin signaling impaired the stimulatory role of IL-6 on eMSC activities. IL-6- and WNT5A-pretreated eMSC showed better performance during the regeneration of the injured mouse endometrium. Conclusion: We demonstrate that the high level of IL-6 produced by endometrial cells at menstruation can induce the stem cells in the human endometrium to proliferate and migrate through the activation of the WNT/ß-catenin pathway. Treatment of eMSC with IL-6 and WNT5A might enhance their therapeutic potential in the regeneration of injured endometrium.


Asunto(s)
Proliferación Celular , Endometrio , Interleucina-6 , Menstruación , Células Madre Mesenquimatosas , Vía de Señalización Wnt , Femenino , Células Madre Mesenquimatosas/metabolismo , Humanos , Interleucina-6/metabolismo , Endometrio/metabolismo , Endometrio/citología , Animales , Ratones , Adulto , Células Cultivadas , Autorrenovación de las Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA