Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inflammopharmacology ; 28(2): 487-497, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31667656

RESUMEN

Excessive reactive oxygen species (ROS) production can induce tissue injury involved in a variety of neurodegenerative disorders such as neurodegeneration observed in pilocarpine-induced temporal lobe epilepsy. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has beneficial effects in pilocarpine-induced temporal lobe epilepsy, when administered within minutes of seizure to avoid the harmful neurological lesions induced by pilocarpine. However, the enzymes involved in ROS productions and the effect of ketamine on this process remain less documented. Here we show that during pilocarpine-induced epilepsy in mice, the expression of the phagocyte NADPH oxidase NOX2 subunits (NOX2/gp91phox, p22phox, and p47phox) and the expression of myeloperoxidase (MPO) were dramatically increased in mice brain treated with pilocarpine. Interestingly, treatment of mice with ketamine before or after pilocarpine administration decreased this process, mainly when injected before pilocarpine. Finally, our results showed that pilocarpine induced p47phox phosphorylation and H2O2 production in mice brain and ketamine was able to inhibit these processes. Our results show that pilocarpine induced NOX2 activation to produce ROS in mice brain and that administration of ketamine before or after the induction of temporal lobe epilepsy by pilocarpine inhibited this activation in mice brain. These results suggest a key role of the phagocyte NADPH oxidase NOX2 and MPO in epilepsy and identify a novel effect of ketamine.


Asunto(s)
Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Antagonistas de Aminoácidos Excitadores/farmacología , Ketamina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/fisiopatología , Ratones , NADPH Oxidasa 2/metabolismo , NADPH Oxidasas/metabolismo , Peroxidasa/metabolismo , Fagocitos/metabolismo , Fosforilación , Pilocarpina
2.
Pharm Biol ; 57(1): 56-64, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30707845

RESUMEN

CONTEXT: Syzygium aromaticum (L.) Merr. & Perry (Myrtaceae), commonly known as clove, originally found in the Muluku Islands in East Indonesia, is widely used as a spice and has numerous medicinal properties. OBJECTIVE: This study investigated the antioxidant potential of S. aromaticum aqueous extract (SAAE) in vitro and its protective effects on lipopolysaccharide (LPS)-induced lung inflammation in mice. MATERIAL AND METHODS: Neutrophils were isolated from healthy donors and reactive oxygen species (ROS) generation was measured by luminol-amplified chemiluminescence. Superoxide anion generation was detected by cytochrome c reduction assay. H2O2 was detected by DCFH fluorescence assay. Myeloperoxidase (MPO) activity was mesured by tetramethyl benzidine oxidation method. To study the anti-inflammatory activity of SAAE, lung inflammation was induced in mice (BALB/c) by intra-tracheal instillation of lypopolysaccharide (5 µg/mouse), and SAAE (200 mg/kg body weight) was injected intraperitoneally prior to LPS administration. Bronchoalveolar lavage and lung tissue were collected to assess inflammatory cells count and total protein content. Metalloproteinases activity was detected by zymography technique. RESULTS: SAAE inhibited luminol-amplified chemiluminescence of resting neutrophils and N-formyl-methionyl-leucyl-phenylalanine- or phorbol myristate acetate-stimulated neutrophils, with an inhibitory effect starting at a concentration as low as 0.5 µg/mL. Moreover, SAAE reduced significantly MPO activity and it exhibits a dose-dependent action (IC50 = 0.5 µg/mL). In vivo results showed that SAAE decreased markedly neutrophil count (From 61% to 15%) and proteins leakage into bronchoalveolar lavage fluid. Gelatin zymography assay showed that S. aromaticum inhibited MMP-2 (15%) and MMP-9 (18%) activity in lung homogenates. DISCUSSION AND CONCLUSION: Our results suggest that the anti-inflammatory activity of SAAE, in vivo, is due to the inhibition of ROS production and metalloproteinases activity via its action on MPO. According to these findings, SAAE could be a potential source of new compounds with anti-inflammatory activity.


Asunto(s)
Neutrófilos/efectos de los fármacos , Peroxidasa/antagonistas & inhibidores , Extractos Vegetales/farmacología , Neumonía/prevención & control , Syzygium/química , Animales , Humanos , Peróxido de Hidrógeno/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Neutrófilos/enzimología , Oxidación-Reducción , Peroxidasa/sangre , Peroxidasa/metabolismo , Extractos Vegetales/aislamiento & purificación , Neumonía/inducido químicamente , Neumonía/metabolismo , Sustancias Protectoras/farmacología , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo
4.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675465

RESUMEN

Eugenol (Eug) is a polyphenol extracted from the essential oil of Syzygium aromaticum (L.) Merr. and Perry (Myrtaceae). The health benefits of eugenol in human diseases were proved in several studies. This work aims to evaluate the effect of eugenol on lung inflammatory disorders. For this, using human neutrophils, the antioxidant activity of eugenol was investigated in vitro. Furthermore, a model of LPS-induced lung injury in mice was used to study the anti-inflammatory effect of eugenol in vivo. Results showed that eugenol inhibits luminol-amplified chemiluminescence of resting neutrophils and after stimulation with N-formyl-methionyl-leucyl-phenylalanine (fMLF) peptide or phorbol myristate acetate (PMA). This effect was dose dependent and was significant from a low concentration of 0.1 µg/mL. Furthermore, eugenol inhibited myeloperoxidase (MPO) activity without affecting its degranulation. Eugenol has no scavenging effect on hydrogen peroxide (H2O2) and superoxide anion (O2-). Pretreatment of mice with eugenol prior to the administration of intra-tracheal LPS significantly reduced neutrophil accumulation in the bronchoalveolar lavage fluid (BALF) and decreased total proteins concentration. Moreover, eugenol clearly inhibited the activity of matrix metalloproteinases MMP-2 (21%) and MMP-9 (28%), stimulated by LPS administration. These results suggest that the anti-inflammatory effect of eugenol against the LPS-induced lung inflammation could be exerted via inhibiting myeloperoxidase and metalloproteinases activity. Thus, eugenol could be a promising molecule for the treatment of lung inflammatory diseases.

5.
Sci Rep ; 9(1): 18540, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811262

RESUMEN

Eugenol is a polyphenol extracted from Syzygium aromaticum essential oil. It is known to have anti-inflammatory and chemoprotective properties as well as a potent anti-oxidant activity due the presence of its phenolic group. In this study, we examined the effects of eugenol on neutrophil superoxide production, a key process involved in innate immunity and inflammation. Superoxide anion generationin human neutrophils was measured by cytochrome c reduction assay. Western blotting was used to analyze the phosphorylation of, p47phox, MAPKinases (p38 and ERK1/2), MEK1/2 and Raf, key proteins involved in the activation of NADPH oxidase. Pretreatment of neutrophils by increasing concentrations (2.5 µg/mL-20 µg/mL) of eugenol for 30 min, inhibited significantly (p < 0.001) superoxide anion generation induced by the chemotactic peptide formyl-Met-Leu-Phe (fMLF) with an IC50 of 5 µg/mL. Phorbolmyristate acetate (PMA)-stimulated O2- production was affected only at the highest eugenol concentration (20 µg/mL). Results showed that eugenol decreased the phosphorylation of p47phox onSer-345 and Ser-328, the translocation of p47phox to the membranesand the phosphorylation of Raf, MEK1/2 and ERK1/2 proteins. Taken together, our results suggest that eugenol inhibits the generation of superoxide anion by neutrophils via the inhibition of Raf/MEK/ERK1/2/p47phox-phosphorylation pathway.


Asunto(s)
Antioxidantes/farmacología , Eugenol/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , NADPH Oxidasas/metabolismo , Neutrófilos/efectos de los fármacos , Quimiotaxis/inmunología , Voluntarios Sanos , Humanos , Sistema de Señalización de MAP Quinasas/inmunología , N-Formilmetionina Leucil-Fenilalanina/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Neutrófilos/inmunología , Neutrófilos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA