Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 96(1): e29346, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38178580

RESUMEN

Orthohantaviruses, etiological agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) outbreaks are particularly endemic in Gyeonggi Province in northern area of the Republic of Korea (ROK). Small mammals were collected from three regions in the Gyeonggi Province during 2017 and 2018. Serological and molecular prevalence of HTNV was 25/201 (12.4%) and 10/25 (40%), respectively. A novel nanopore-based diagnostic assay using a cost-efficient Flongle chip was developed to rapidly and sensitively detect HTNV infection in rodent specimens within 3 h. A rapid phylogeographical surveillance of HTNV at high-resolution phylogeny was established using the amplicon-based Flongle sequencing. In total, seven whole-genome sequences of HTNV were newly obtained from wild rodents collected in Paju-si (Gaekhyeon-ri) and Yeoncheon-gun (Hyeonga-ri and Wangnim-ri), Gyeonggi Province. Phylogenetic analyses revealed well-supported evolutionary divergence and genetic diversity, enhancing the resolution of the phylogeographic map of orthohantaviruses in the ROK. Incongruences in phylogenetic patterns were identified among HTNV tripartite genomes, suggesting differential evolution for each segment. These findings provide crucial insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK.


Asunto(s)
Virus Hantaan , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Animales , Filogenia , Virus Hantaan/genética , Orthohantavirus/genética , Roedores , Mamíferos , República de Corea/epidemiología
2.
J Med Virol ; 96(9): e29915, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39279412

RESUMEN

In the ongoing battle against coronavirus disease 2019 (COVID-19), understanding its pathogenesis and developing effective treatments remain critical challenges. The creation of animal models that closely replicate human infection stands as a critical step forward in this research. Here, we present a genetically engineered mouse model with specifically-humanized knock-in ACE2 (hiACE2) receptors. This model, featuring nine specific amino acid substitutions for enhanced interaction with the viral spike protein, enables efficient severe acute respiratory syndrome coronavirus 2 replication in respiratory organs without detectable infection in the central nervous system. Moreover, it mirrors the age- and sex-specific patterns of morbidity and mortality, as well as the immunopathological features observed in human COVID-19 cases. Our findings further demonstrate that the depletion of eosinophils significantly reduces morbidity and mortality, depending on the infecting viral dose and the sex of the host. This reduction is potentially achieved by decreasing the pathogenic contribution of eosinophil-mediated inflammation, which is strongly correlated with neutrophil activity in human patients. This underscores the model's utility in studying the immunopathological aspects of COVID-19 and represents a significant advancement in COVID-19 modeling. It offers a valuable tool for testing vaccines and therapeutics, enhancing our understanding of the disease mechanisms and potentially guiding more targeted and effective treatments.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Modelos Animales de Enfermedad , Eosinófilos , SARS-CoV-2 , Animales , COVID-19/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Ratones , Humanos , Femenino , Masculino , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Eosinófilos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Factores Sexuales , Factores de Edad , Replicación Viral , Técnicas de Sustitución del Gen
3.
PLoS Pathog ; 17(1): e1009179, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471866

RESUMEN

Primary effusion lymphoma (PEL) is an aggressive B cell lymphoma that is etiologically linked to Kaposi's sarcoma-associated herpesvirus (KSHV). Despite standard multi-chemotherapy treatment, PEL continues to cause high mortality. Thus, new strategies to control PEL are needed urgently. Here, we show that a phosphodegron motif within the KSHV protein, latency-associated nuclear antigen (LANA), specifically interacts with E3 ubiquitin ligase FBW7, thereby competitively inhibiting the binding of the anti-apoptotic protein MCL-1 to FBW7. Consequently, LANA-FBW7 interaction enhances the stability of MCL-1 by preventing its proteasome-mediated degradation, which inhibits caspase-3-mediated apoptosis in PEL cells. Importantly, MCL-1 inhibitors markedly suppress colony formation on soft agar and tumor growth of KSHV+PEL/BCBL-1 in a xenograft mouse model. These results strongly support the conclusion that high levels of MCL-1 expression enable the oncogenesis of PEL cells and thus, MCL-1 could be a potential drug target for KSHV-associated PEL. This work also unravels a mechanism by which an oncogenic virus perturbs a key component of the ubiquitination pathway to induce tumorigenesis.


Asunto(s)
Antígenos Virales/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Herpesvirus Humano 8/fisiología , Linfoma de Efusión Primaria/virología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Nucleares/metabolismo , Sarcoma de Kaposi/virología , Secuencia de Aminoácidos , Animales , Antígenos Virales/genética , Apoptosis , Proliferación Celular , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Femenino , Humanos , Linfoma de Efusión Primaria/genética , Linfoma de Efusión Primaria/metabolismo , Linfoma de Efusión Primaria/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Nucleares/genética , Fosforilación , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patología , Células Tumorales Cultivadas , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Med Virol ; 95(9): e29099, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37702580

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease with high mortality in Eastern Asia. The disease is caused by the SFTS virus (SFTSV), also known as Dabie bandavirus, which has a segmented RNA genome consisting of L, M, and S segments. Previous studies have suggested differential viral virulence depending on the genotypes of SFTSV; however, the critical viral factor involved in the differential viral virulence is unknown. Here, we found a significant difference in viral replication in vitro and virulence in vivo between two Korean isolates belonging to the F and B genotypes, respectively. By generating viral reassortants using the two viral strains, we demonstrated that the L segment, which encodes viral RNA-dependent RNA polymerase (RdRp), is responsible for the enhanced viral replication and virulence. Comparison of amino acid sequences and viral replication rates revealed a point variation, E251K, on the surface of RdRp to be the most significant determinant for the enhanced viral replication rate and in vivo virulence. The effect of the variation was further confirmed using recombinant SFTSV generated by reverse genetic engineering. Therefore, our results indicate that natural variations affecting the viral replicase activity could significantly contribute to the viral virulence of SFTSV.


Asunto(s)
Síndrome de Trombocitopenia Febril Grave , Humanos , Virulencia , ARN Polimerasas Dirigidas por ADN/genética , Replicación Viral , ARN Polimerasa Dependiente del ARN/genética
5.
J Med Virol ; 95(7): e28894, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386895

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause the hyperproduction of inflammatory cytokines, which have pathological effects in patient including severe or fatal cytokine storms. To characterize the effect of SFTSV and SARS-CoV-2 infection on the production of cytokines in severe fever with thrombocytopenia syndrome (SFTS) and COVID-19 patients, we performed an analysis of cytokines in SFTS and COVID-19 patients and also investigated the role of interleukin-10 (IL-10) in vitro studies: lipopolysaccharide-induced THP-1-derived macrophages, SFTSV infection of THP-1 cells, and SARS-CoV-2 infection of THP-1 cells. In this study, we found that levels of both IL-10 and IL-6 were significantly elevated, the level of transforming growth factor-ß (TGF-ß) was significantly decreased and IL-10 was elevated earlier than IL-6 in severe and critical COVID-19 and fatal SFTS patients, and inhibition of IL-10 signaling decreased the production of IL-6 and elevated that of TGF-ß. Therefore, the hyperproduction of IL-10 and IL-6 and the low production of TGF-ß have been linked to cytokine storm-induced mortality in fatal SFTS and severe and critically ill COVID-19 patients and that IL-10 can play an important role in the host immune response to severe and critical SARS-CoV-2 and fatal SFTSV infection.


Asunto(s)
COVID-19 , Síndrome de Trombocitopenia Febril Grave , Humanos , Síndrome de Liberación de Citoquinas , Citocinas , Interleucina-10 , Interleucina-6 , SARS-CoV-2 , Factor de Crecimiento Transformador beta
6.
Clin Infect Dis ; 75(4): 596-603, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893799

RESUMEN

BACKGROUND: Middle East respiratory syndrome (MERS) is a highly lethal respiratory disease caused by a zoonotic betacoronavirus. The development of effective vaccines and control measures requires a thorough understanding of the immune response to this viral infection. METHODS: We investigated cellular immune responses up to 5 years after infection in a cohort of 59 MERS survivors by performing enzyme-linked immunospot assay and intracellular cytokine staining after stimulation of peripheral blood mononuclear cells with synthetic viral peptides. RESULTS: Memory T-cell responses were detected in 82%, 75%, 69%, 64%, and 64% of MERS survivors from 1-5 years post-infection, respectively. Although the frequency of virus-specific interferon gamma (IFN-γ)-secreting T cells tended to be higher in moderately/severely ill patients than in mildly ill patients during the early period of follow-up, there was no significant difference among the different clinical severity groups across all time points. While both CD4+ and CD8+ T cells were involved in memory T-cell responses, CD4+ T cells persisted slightly longer than CD8+ T cells. Both memory CD4+ and CD8+ T cells recognized the E/M/N proteins better than the S protein and maintained their polyfunctionality throughout the period examined. Memory T-cell responses correlated positively with antibody responses during the initial 3-4 years but not with maximum viral loads at any time point. CONCLUSIONS: These findings advance our understanding of the dynamics of virus-specific memory T-cell immunity after MERS-coronavirus infection, which is relevant to the development of effective T cell-based vaccines.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Humanos , Memoria Inmunológica , Leucocitos Mononucleares , Células T de Memoria , Sobrevivientes
7.
J Korean Med Sci ; 37(8): e67, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35226425

RESUMEN

We investigated the kinetics of the neutralizing antibody responses to the severe acute respiratory syndrome-coronavirus-2 delta variant over the course of 1 year in 16 patients infected at the beginning of the pandemic. In patients with severe disease, neutralizing responses to the delta variant were detectable, albeit at lower levels than responses to the wild type. Neutralizing responses to the delta variant were undetectable, however, in asymptomatic persons. This finding implies that the vaccination strategy for persons with past natural infection should depend on the severity of the previous infection.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Vacunación , Adulto Joven
8.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614125

RESUMEN

The use of vaccines is the most effective and reliable method for the prevention of viral infections. However, research on evaluation of effective therapeutic agents for use in treatment after infection is necessary. Zanamivir was administered through inhalation for treatment of pandemic influenza A/H1N1 in 2009. However, the emergence of drug-resistant strains can occur rapidly. Alloferon, an immunomodulatory drug developed as an NK cell activator, exerts antiviral effects against various viruses, particularly influenza viruses. Therefore, alloferon and zanamivir were administered in combination in an effort to improve the antiviral effect of zanamivir by reducing H1N1 resistance. First, we confirmed that administration of combined treatment would result in effective inhibition of viral proliferation in MDCK and A549 cells infected with H1N1. Production of IL-6 and MIP-1α in these cells and the activity of p38 MAPK and c-Jun that are increased by H1N1 were inhibited by combined treatment. Mice were then infected intranasally with H1N1, and examination of the antiviral efficacy of the alloferon/zanamivir combination was performed. The results showed that combined treatment after infection with H1N1 prevented weight loss, increased the survival rate, and improved lung fibrosis. Combined treatment also resulted in reduced infiltration of neutrophils and macrophages into the lungs. Combined treatment effectively inhibited the activity of p38 MAPK and c-Jun in lung tissue, which was increased by infection with H1N1. Therefore, the combination of alloferon/zanamivir effectively prevents the development of H1N1-mediated inflammation in the lungs by inhibiting the production of inflammatory mediators and migration of inflammatory cells into lung tissue.


Asunto(s)
Antivirales , Infecciones por Orthomyxoviridae , Zanamivir , Animales , Humanos , Ratones , Antivirales/farmacología , Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A , Neuraminidasa , Oseltamivir/farmacología , Zanamivir/farmacología , Infecciones por Orthomyxoviridae/tratamiento farmacológico
9.
Clin Infect Dis ; 73(3): e550-e558, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-32898238

RESUMEN

BACKGROUND: Zoonotic coronaviruses have emerged as a global threat by causing fatal respiratory infections. Given the lack of specific antiviral therapies, application of human convalescent plasma retaining neutralizing activity could be a viable therapeutic option that can bridges this gap. METHODS: We traced antibody responses and memory B cells in peripheral blood collected from 70 recovered Middle East respiratory syndrome coronavirus (MERS-CoV) patients for 3 years after the 2015 outbreak in South Korea. We also used a mouse infection model to examine whether the neutralizing activity of collected sera could provide therapeutic benefit in vivo upon lethal MERS-CoV challenge. RESULTS: Anti-spike-specific IgG responses, including neutralizing activity and antibody-secreting memory B cells, persisted for up to 3 years, especially in MERS patients who suffered from severe pneumonia. Mean antibody titers gradually decreased annually by less than 2-fold. Levels of antibody responses were significantly correlated with fever duration, viral shedding periods, and maximum viral loads observed during infection periods. In a transgenic mice model challenged with lethal doses of MERS-CoV, a significant reduction in viral loads and enhanced survival was observed when therapeutically treated with human plasma retaining a high neutralizing titer (> 1/5000). However, this failed to reduce pulmonary pathogenesis, as revealed by pathological changes in lungs and initial weight loss. CONCLUSIONS: High titers of neutralizing activity are required for suppressive effect on the viral replication but may not be sufficient to reduce inflammatory lesions upon fatal infection. Therefore, immune sera with high neutralizing activity must be carefully selected for plasma therapy of zoonotic coronavirus infection.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus/tratamiento farmacológico , Humanos , Ratones , República de Corea , Glicoproteína de la Espiga del Coronavirus
10.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967955

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness and has a high mortality of ∼34%. However, since its discovery in 2012, an effective vaccine has not been developed for it. To develop a vaccine against multiple strains of MERS-CoV, we targeted spike glycoprotein (S) using prime-boost vaccination with DNA and insect cell-expressed recombinant proteins for the receptor-binding domain (RBD), S1, S2, SΔTM, or SΔER. Our S subunits were generated using an S sequence derived from the MERS-CoV EMC/2012 strain. We examined humoral and cellular immune responses of various combinations with DNA plasmids and recombinant proteins in mice. Mouse sera immunized with SΔER DNA priming/SΔTM protein boosting showed cross-neutralization against 15 variants of S-pseudovirions and the wild-type KOR/KNIH/002 strain. In addition, these immunizations provided full protection against the KOR/KNIH/002 strain challenge in human DPP4 knock-in mice. These findings suggest that vaccination with the S subunits derived from one viral strain can provide cross-protection against variant MERS-CoV strains with mutations in S. DNA priming/protein boosting increased gamma interferon production, while protein-alone immunization did not. The RBD subunit alone was insufficient to induce neutralizing antibodies, suggesting the importance of structural conformation. In conclusion, heterologous DNA priming with protein boosting is an effective way to induce both neutralizing antibodies and cell-mediated immune responses for MERS-CoV vaccine development. This study suggests a strategy for selecting a suitable platform for developing vaccines against MERS-CoV or other emerging coronaviruses.IMPORTANCE Coronavirus is an RNA virus with a higher mutation rate than DNA viruses. Therefore, a mutation in S-protein, which mediates viral infection by binding to a human cellular receptor, is expected to cause difficulties in vaccine development. Given that DNA-protein vaccines promote stronger cell-mediated immune responses than protein-only vaccination, we immunized mice with various combinations of DNA priming and protein boosting using the S-subunit sequences of the MERS-CoV EMC/2012 strain. We demonstrated a cross-protective effect against wild-type KOR/KNIH/002, a strain with two mutations in the S amino acids, including one in its RBD. The vaccine also provided cross-neutralization against 15 different S-pseudotyped viruses. These suggested that a vaccine targeting one variant of S can provide cross-protection against multiple viral strains with mutations in S. The regimen of DNA priming/Protein boosting can be applied to the development of other coronavirus vaccines.


Asunto(s)
Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Protección Cruzada , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunidad Celular , Inmunización Secundaria , Inmunogenicidad Vacunal , Ratones , Plásmidos/administración & dosificación , Plásmidos/genética , Plásmidos/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas de ADN/administración & dosificación , Vacunas Virales/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA