RESUMEN
Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists.
Asunto(s)
Encéfalo/metabolismo , Neuroquinina B/metabolismo , Precursores de Proteínas/metabolismo , Aislamiento Social , Estrés Psicológico , Taquicininas/metabolismo , Animales , Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/patología , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuroquinina B/genética , Neuronas/citología , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inhibidores , Precursores de Proteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores de Taquicininas/antagonistas & inhibidores , Receptores de Taquicininas/metabolismo , Taquicininas/antagonistas & inhibidores , Taquicininas/genética , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Mounting evidence suggests that nematode infection can protect against disorders of immune dysregulation. Administration of live parasites or their excretory/secretory (ES) products has shown therapeutic effects across a wide range of animal models for immune disorders, including asthma. Human clinical trials of live parasite ingestion for the treatment of immune disorders have produced promising results, yet concerns persist regarding the ingestion of pathogenic organisms and the immunogenicity of protein components. Despite extensive efforts to define the active components of ES products, no small molecules with immune regulatory activity have been identified from nematodes. Here we show that an evolutionarily conserved family of nematode pheromones called ascarosides strongly modulates the pulmonary immune response and reduces asthma severity in mice. Screening the inhibitory effects of ascarosides produced by animal-parasitic nematodes on the development of asthma in an ovalbumin (OVA) murine model, we found that administration of nanogram quantities of ascr#7 prevented the development of lung eosinophilia, goblet cell metaplasia, and airway hyperreactivity. Ascr#7 suppressed the production of IL-33 from lung epithelial cells and reduced the number of memory-type pathogenic Th2 cells and ILC2s in the lung, both key drivers of the pathology of asthma. Our findings suggest that the mammalian immune system recognizes ascarosides as an evolutionarily conserved molecular signature of parasitic nematodes. The identification of a nematode-produced small molecule underlying the well-documented immunomodulatory effects of ES products may enable the development of treatment strategies for allergic diseases.
Asunto(s)
Inflamación/prevención & control , Nematodos/química , Tráquea/efectos de los fármacos , Animales , Asma/fisiopatología , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Hipersensibilidad/fisiopatología , Inflamación/inducido químicamente , Ratones , Ratones Endogámicos BALB C , Nematodos/patogenicidad , Ovalbúmina/efectos adversos , Bibliotecas de Moléculas Pequeñas/farmacología , Tráquea/fisiopatologíaRESUMEN
Males of the androdioecious species Caenorhabditis elegans are more likely to attempt to mate with and successfully inseminate C. elegans hermaphrodites that do not concurrently harbor sperm. Although a small number of genes have been implicated in this effect, the mechanism by which it arises remains unknown. In the context of the battle of the sexes, it is also unknown whether this effect is to the benefit of the male, the hermaphrodite, or both. We report that successful contact between mature sperm and oocyte in the C. elegans gonad at the start of fertilization causes the oocyte to release a signal that is transmitted to somatic cells in its mother, with the ultimate effect of reducing her attractiveness to males. Changes in hermaphrodite attractiveness are tied to the production of a volatile pheromone, the first such pheromone described in C. elegans.
Asunto(s)
Caenorhabditis elegans/fisiología , Comunicación Celular/fisiología , Organismos Hermafroditas/fisiología , Oocitos/metabolismo , Atractivos Sexuales/biosíntesis , Compuestos Orgánicos Volátiles/metabolismo , Animales , Quimiotaxis/fisiología , Medios de Cultivo/metabolismo , Masculino , Conducta Sexual Animal/fisiología , Espermatozoides/metabolismoRESUMEN
Nematodes use an extensive chemical language based on glycosides of the dideoxysugar ascarylose for developmental regulation (dauer formation), male sex attraction, aggregation, and dispersal. However, no examples of a female- or hermaphrodite-specific sex attractant have been identified to date. In this study, we investigated the pheromone system of the gonochoristic sour paste nematode Panagrellus redivivus, which produces sex-specific attractants of the opposite sex. Activity-guided fractionation of the P. redivivus exometabolome revealed that males are strongly attracted to ascr#1 (also known as daumone), an ascaroside previously identified from Caenorhabditis elegans hermaphrodites. Female P. redivivus are repelled by high concentrations of ascr#1 but are specifically attracted to a previously unknown ascaroside that we named dhas#18, a dihydroxy derivative of the known ascr#18 and an ascaroside that features extensive functionalization of the lipid-derived side chain. Targeted profiling of the P. redivivus exometabolome revealed several additional ascarosides that did not induce strong chemotaxis. We show that P. redivivus females, but not males, produce the male-attracting ascr#1, whereas males, but not females, produce the female-attracting dhas#18. These results show that ascaroside biosynthesis in P. redivivus is highly sex-specific. Furthermore, the extensive side chain functionalization in dhas#18, which is reminiscent of polyketide-derived natural products, indicates unanticipated biosynthetic capabilities in nematodes.
Asunto(s)
Nematodos/metabolismo , Atractivos Sexuales/metabolismo , Animales , Quimiotaxis/efectos de los fármacos , Femenino , Espectroscopía de Resonancia Magnética/métodos , Masculino , Metabolómica , Modelos Biológicos , Modelos Químicos , Oxígeno/química , Peroxisomas/metabolismo , Feromonas/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología , Transducción de SeñalRESUMEN
Many bacterivorous and parasitic nematodes secrete signaling molecules called ascarosides that play a central role regulating their behavior and development. Combining stable-isotope labeling and mass spectrometry-based comparative metabolomics, here we show that ascarosides are taken up from the environment and metabolized by a wide range of phyla, including plants, fungi, bacteria, and mammals, as well as nematodes. In most tested eukaryotes and some bacteria, ascarosides are metabolized into derivatives with shortened fatty acid side chains, analogous to ascaroside biosynthesis in nematodes. In plants and C. elegans, labeled ascarosides were additionally integrated into larger, modular metabolites, and use of different ascaroside stereoisomers revealed the stereospecificity of their biosynthesis. The finding that nematodes extensively metabolize ascarosides taken up from the environment suggests that pheromone editing may play a role in conspecific and interspecific interactions. Moreover, our results indicate that plants, animals, and microorganisms may interact with associated nematodes via manipulation of ascaroside signaling.
Asunto(s)
Bacterias/metabolismo , Caenorhabditis elegans/metabolismo , Glucolípidos/metabolismo , Plantas/metabolismo , Animales , Metabolómica , Ratones , Ratas , Transducción de SeñalRESUMEN
We have examined the expression of three paralogous Hox genes from E11.5 through E15.5 in the mouse spinal cord. These ages coincide with major phases of spinal cord neurogenesis, neuronal differentiation, cell migration, gliogenesis, and motor neuron cell death. The three genes, Hoxa10, Hoxc10, and Hoxd10, are all expressed in the lumbar spinal cord and have distinct expression patterns. Mutations in these three genes are known to affect motor neuron patterning. All three genes show lower levels of expression at the rostral limits of their domains, with selective regions of higher expression more caudally. Hoxa10 and Hoxd10 expression appears confined to postmitotic cell populations in the intermediate and ventral gray, while Hoxc10 is also expressed in proliferating cells in the dorsal ventricular zone. Hoxc10 and Hoxd10 expression is clearly excluded from the lateral motor columns at rostral lumbar levels but is present in this region more caudally. Double labeling demonstrates that Hoxc10 expression is correlated with ventrolateral LIM gene expression in the caudal part of the lumbar spinal cord.
Asunto(s)
Proteínas de Homeodominio/genética , Médula Espinal/embriología , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo/genética , Proliferación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Homeobox A10 , Hibridación in Situ , Región Lumbosacra/inervación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/química , Médula Espinal/metabolismoRESUMEN
Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture.
Asunto(s)
Arabidopsis/inmunología , Interacciones Huésped-Parásitos , Nematodos/metabolismo , Feromonas/metabolismo , Inmunidad de la Planta , Animales , Arabidopsis/parasitología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Pseudomonas syringae , Ácido Salicílico/metabolismo , Transducción de SeñalRESUMEN
BACKGROUND: Nematodes are among the most successful animals on earth and include important human pathogens, yet little is known about nematode pheromone systems. A group of small molecules called ascarosides has been found to mediate mate finding, aggregation, and developmental diapause in Caenorhabditis elegans, but it is unknown whether ascaroside signaling exists outside of the genus Caenorhabditis. RESULTS: To determine whether ascarosides are used as signaling molecules by other nematode species, we performed a mass spectrometry-based screen for ascarosides in secretions from a variety of both free-living and parasitic (plant, insect, and animal) nematodes. We found that most of the species analyzed, including nematodes from several different clades, produce species-specific ascaroside mixtures. In some cases, ascaroside biosynthesis patterns appear to correlate with phylogeny, whereas in other cases, biosynthesis seems to correlate with lifestyle and ecological niche. We further show that ascarosides mediate distinct nematode behaviors, such as retention, avoidance, and long-range attraction, and that different nematode species respond to distinct, but overlapping, sets of ascarosides. CONCLUSIONS: Our findings indicate that nematodes utilize a conserved family of signaling molecules despite having evolved to occupy diverse ecologies. Their structural features and level of conservation are evocative of bacterial quorum sensing, where acyl homoserine lactones (AHLs) are both produced and sensed by many species of gram-negative bacteria. The identification of species-specific ascaroside profiles may enable pheromone-based approaches to interfere with reproduction and survival of parasitic nematodes, which are responsible for significant agricultural losses and many human diseases worldwide.
Asunto(s)
Ácidos Carboxílicos/metabolismo , Glicósidos/metabolismo , Nematodos/metabolismo , Transducción de Señal , AnimalesRESUMEN
UNLABELLED: Fibroblast growth factor (FGF) signaling and beta-catenin activation have been shown to be crucial for early embryonic liver development. This study determined the significance of FGF10-mediated signaling in a murine embryonic liver progenitor cell population as well as its relation to beta-catenin activation. We observed that Fgf10(-/-) and Fgfr2b(-/-) mouse embryonic livers are smaller than wild-type livers; Fgf10(-/-) livers exhibit diminished proliferation of hepatoblasts. A comparison of beta-galactosidase activity as a readout of Fgf10 expression in Fgf10(+/LacZ) mice and of beta-catenin activation in TOPGAL mice, demonstrated peak Fgf10 expression from E9 to E13.5 coinciding with peak beta-catenin activation. Flow cytometric isolation and marker gene expression analysis of LacZ(+) cells from E13.5 Fgf10(+/LacZ) and TOPGAL livers, respectively, revealed that Fgf10 expression and beta-catenin signaling occur distinctly in stellate/myofibroblastic cells and hepatoblasts, respectively. Moreover, hepatoblasts express Fgfr2b, which strongly suggests they can respond to recombinant FGF10 produced by stellate cells. Fgfr2b(-/-)/TOPGAL(+/+) embryonic livers displayed less beta-galactosidase activity than livers of Fgfr2b(+/+)/TOPGAL(+/+) littermates. In addition, cultures of whole liver explants in Matrigel or cell in suspension from E12.5 TOPGAL(+/+)mice displayed a marked increase in beta-galactosidase activity and cell survival upon treatment with recombinant FGF10, indicating that FGFR (most likely FGFR2B) activation is upstream of beta-catenin signaling and promote hepatoblast survival. CONCLUSION: Embryonic stellate/myofibroblastic cells promote beta-catenin activation in and survival of hepatoblasts via FGF10-mediated signaling. We suggest a role for stellate/myofibroblastic FGF10 within the liver stem cell niche in supporting the proliferating hepatoblast.
Asunto(s)
Desarrollo Embrionario/fisiología , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Hígado/embriología , Hígado/metabolismo , beta Catenina/metabolismo , Animales , Proliferación Celular , Supervivencia Celular/fisiología , Células Cultivadas , Desarrollo Embrionario/genética , Factor 10 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Hepatocitos/citología , Hígado/citología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/fisiología , beta Catenina/genética , beta-Galactosidasa/metabolismoRESUMEN
Vascular calcification is a regulated process of biomineralization resembling osteogenesis. Many bone-related factors, including resorptive osteoclast-like cells, although in low abundance, have been found in calcified atherosclerotic lesions. The regulatory mechanisms governing them in the vasculature, however, are not clear. Previously, we found that calcifying vascular cells (CVC), a subpopulation of bovine aortic smooth muscle cells (BASMC), undergo osteoblastic differentiation and form mineralized nodules. Since osteoblasts and marrow stromal preosteoblasts regulate osteoclastic differentiation in bone, we hypothesized that vascular cells also regulate differentiation of osteoclastic precursors in the artery wall. Peripheral blood monocytes, which are osteoclast precursors, were co-cultured with CVC or BASMC. Results showed that monocytes co-cultured with both of the vascular cells yielded fewer resorption pits than monocytes cultured alone. Furthermore, monocytes co-cultured with CVC had fewer resorption pits than those co-cultured with BASMC. Conditioned media from the vascular cells also inhibited resorptive activity of monocytes suggesting that the inhibitory effect was mediated in part by soluble factors. Compared with BASMC, CVC had lower mRNA expression for osteopontin, which promotes osteoclast attachment, but greater mRNA expression for the soluble inhibitory cytokine, IL-18. Increased osteoclastic differentiation was observed when neutralizing antibody to IL-18 receptor was added to the cultures of preosteoclasts with CVC conditioned media. Osteoprotegerin, another osteoclast inhibitory cytokine, was expressed at similar levels in both cultures. These results suggest that vascular cells inhibit osteoclastic differentiation, and that CVC have greater inhibitory effects than BASMC.