Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Life (Basel) ; 14(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39063633

RESUMEN

Maternal separation with early weaning (MSEW) is a popular early life stress (ELS) model in rodents, which emulates childhood neglect through scheduled mother-offspring separation. Although variations of ELS models, including maternal separation and MSEW, have been published for the mouse species, the reported results are inconsistent. Corticosterone is considered the main stress hormone involved in regulating stress responses in rodents-yet generating a robust and reproducible corticosterone response in mouse models of ELS has been elusive. Considering the current lack of standardization for MSEW protocols, these inconsistent results may be attributed to variations in model methodologies. Here, we compared the effects of select early wean diet sources-which are the non-milk diets used to complete early weaning in MSEW pups-on the immediate stress phenotype of C57BL/6J mice at postnatal day 21. Non-aversive handling was an integral component of our modified MSEW model. The evaluation of body weight and serum corticosterone revealed the early wean diet to be a key variable in the resulting stress phenotype. Interestingly, select non-milk diets facilitated a stress phenotype in which low body weight was accompanied by significant corticosterone elevation. Our data indicate that dietary considerations are critical in MSEW-based studies and provide insight into improving the reproducibility of key stress-associated outcomes as a function of this widely used ELS paradigm.

2.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38256885

RESUMEN

A hallmark of effective cancer treatment is the prevention of tumor reoccurrence and metastasis to distal organs, which are responsible for most cancer deaths. However, primary tumor resection is expected to be curative as most solid tumors have been shown both experimentally and clinically to accelerate metastasis to distal organs including the lungs. In this study, we evaluated the efficacy of our engineered nasal nano-vaccine (CpG-NP-Tag) in reducing accelerated lung metastasis resulting from primary tumor resection. Cytosine-phosphate-guanine oligonucleotide [CpG ODN]-conjugated nanoparticle [NP] encapsulating tumor antigen [Tag] (CpG-NP-Tag) was manufactured and tested in vivo using a syngeneic mouse mammary tumor model following intranasal delivery. We found that our nasal nano-vaccine (CpG-NP-Tag), compared to control NPs administered after primary mammary tumor resection, significantly reduced lung metastasis in female BALB/c mice subjected to surgery (surgery mice). An evaluation of vaccine efficacy in both surgery and non-surgery mice revealed that primary tumor resection reduces CD11b+ monocyte-derived suppressor-like cell accumulation in the lungs, allowing increased infiltration of vaccine-elicited T cells (IFN-γ CD8+ T cells) in the lungs of surgery mice compared to non-surgery mice. These findings suggest that the combination of the target delivery of a nasal vaccine in conjunction with the standard surgery of primary tumors is a plausible adjunctive treatment against the establishment of lung metastasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA