RESUMEN
Mulberry (Morus alba L.) leaves (MLs), originally used to feed silkworms, have recently been recognized as a food ingredient containing health-beneficial, bioactive compounds. In this study, the extrusion process was applied for the enhancement of the amount of extractable flavonoids from MLs. Extrusion conditions were optimized by water solubility index, total phenolic content, and total flavonoid content (TF) using response surface methodology, and antioxidative stress activities were evaluated in macrophage cells. According to the significance of regression coefficients of TF, the optimal extrusion parameters were set as barrel temperature of 114 °C, moisture feed content of 20%, and screw speed of 232 rpm. Under these conditions, the TF of extruded ML reached to 0.91% and improved by 63% compared with raw ML. Fifteen flavonoids were analyzed using ultra-high-performance liquid chromatograph coupled with photodiode array detection and quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOF/MS), and the extrusion resulted in increases in quercetin-3-gentiobioside, quercetin-3,7-di-O-glucoside, kaempferol-3,7-di-O-glucoside, rutin, isoquercitrin, and moragrol C. Besides, regarding antioxidative activity, extruded ML water extract inhibited the production of H2O2-induced reactive oxygen species and attenuated nuclear morphology alterations in macrophage cells. The findings of this study should be useful in food processing design to improve the extractable functional compounds in MLs.
Asunto(s)
Antioxidantes/farmacología , Morus/química , Animales , Antioxidantes/química , Apoptosis , Cromatografía Líquida de Alta Presión , Flavonoides/química , Peróxido de Hidrógeno/análisis , Concentración 50 Inhibidora , Macrófagos/metabolismo , Ratones , Fenol/química , Fenoles/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Especies Reactivas de Oxígeno/metabolismo , Solubilidad , Temperatura , Agua/químicaRESUMEN
Mulberry fruit (Morus alba L.) contains abundant bioactive compounds, including anthocyanins and flavonols, and has been reported to possess potent beneficial properties including anticancer, antidiabetic, and anti-oxidant effects. High hydrostatic pressure (HHP) processing, a nonthermal food processing technology, is suitable for the extraction of bioactive compounds from plants. Nevertheless, the anti-inflammatory effects of HHP extract of mulberry fruit (HM) in RAW264.7 cells remain unclear. The present study aimed to investigate the anti-inflammatory effects of HM on lipopolysaccharide (LPS)-induced inflammation in vitro. RAW264.7 cells were treated with various concentrations (0.1-1 µg/mL) of HM in the presence or absence of LPS. HM inhibited the inflammatory mediator, nitric oxide (NO) release, and mRNA expression of nitric oxide synthase 2 (NOS2) in LPS-induced RAW264.7 cells. In addition, HM suppressed both mRNA and protein expressions of prostaglandin-endoperoxide synthase 2 (PTGS2). Moreover, it reduced the LPS-induced secretion of proinflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α. These results revealed that HM exerts anti-inflammatory effects by inhibiting several mediators and cytokines involved in the inflammatory process.
Asunto(s)
Frutas/química , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Morus/química , Animales , Ciclooxigenasa 2/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Presión Hidrostática , Inflamación/patología , Interleucina-6/genética , Lipopolisacáridos/química , Ratones , Óxido Nítrico/genética , Óxido Nítrico Sintasa de Tipo II/genética , Células RAW 264.7 , ARN Mensajero/genética , Factor de Necrosis Tumoral alfa/genéticaRESUMEN
The status of the GP130-STAT3 signaling pathway in humans with nonalcoholic fatty liver disease (NAFLD) and its relevance to disease pathogenesis are unknown. The expression of the gp130-STAT3 axis and gp130 cytokine receptors were studied in subjects with varying phenotypes of NAFLD including nonalcoholic steatohepatitis (NASH) and compared with lean and weight-matched controls without NAFLD. Gp130 and its downstream signaling element (Tyk2 and STAT3) expression were inhibited in obese controls whereas they were increased in NAFLD. IL-6 levels were increased in NASH and correlated with gp130 expression (P < 0.01). Palmitate inhibited gp130-STAT3 expression and signaling. IL-6 and palmitate inhibited hepatic insulin signaling via STAT3-dependent and independent mechanisms, respectively. STAT3 overexpression reversed palmitate-induced lipotoxicity by increasing autophagy (ATG7) and decreasing endoplasmic reticulum stress. These data demonstrate that the STAT3 pathway is activated in NAFLD and can worsen insulin resistance while protecting against other lipotoxic mechanisms of disease pathogenesis.
Asunto(s)
Receptor gp130 de Citocinas/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Adulto , Anciano , Proteína 7 Relacionada con la Autofagia , Estudios de Casos y Controles , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico , Femenino , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Interleucina-6/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Palmítico/farmacología , Fenotipo , Transducción de Señal/efectos de los fármacos , TYK2 Quinasa/metabolismo , Factores de Tiempo , Transfección , Enzimas Activadoras de Ubiquitina/metabolismoRESUMEN
A subset of colorectal cancers was postulated to have the CpG island methylator phenotype (CIMP), a higher propensity for CpG island DNA methylation. The validity of CIMP, its molecular basis, and its prognostic value remain highly controversial. Using MBD-isolated genome sequencing, we mapped and compared genome-wide DNA methylation profiles of normal, non-CIMP, and CIMP colon specimens. Multidimensional scaling analysis revealed that each specimen could be clearly classified as normal, non-CIMP, and CIMP, thus signifying that these three groups have distinctly different global methylation patterns. We discovered 3780 sites in various genomic contexts that were hypermethylated in both non-CIMP and CIMP colon cancers when compared with normal colon. An additional 2026 sites were found to be hypermethylated in CIMP tumors only; and importantly, 80% of these sites were located in CpG islands. These data demonstrate on a genome-wide level that the additional hypermethylation seen in CIMP tumors occurs almost exclusively at CpG islands and support definitively that these tumors were appropriately named. When these sites were examined more closely, we found that 25% were adjacent to sites that were also hypermethylated in non-CIMP tumors. Thus, CIMP is also characterized by more extensive methylation of sites that are already prone to be hypermethylated in colon cancer. These observations indicate that CIMP tumors have specific defects in controlling both DNA methylation seeding and spreading and serve as an important first step in delineating molecular mechanisms that control these processes.
Asunto(s)
Neoplasias del Colon/genética , Islas de CpG , Metilación de ADN , Fenotipo , Secuencia de Bases , Biomarcadores de Tumor/genética , Neoplasias del Colon/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Transducción de SeñalRESUMEN
Network pharmacology is an ideal tool to explore the effects of therapeutic components derived from plants on human metabolic diseases that are linked to inflammation. This study investigated the antioxidant effects of ginger leaves (GLs) and predicted targets for antioxidant activity. Quantitative and free radical scavenging analyses were performed to detect the main bioactive compounds of GLs and evaluate their antioxidant activities. Chemical diversity and network pharmacology approaches were used to predict key antioxidant components of GLs and their molecular targets. Nine major bioactive compounds of GLs were quantified using an internal standard method, and the antioxidant activity was evaluated using the DPPH and ABTS free radical scavenging methods. We first built the compound-gene-pathways and protein-protein interaction networks of GLs-related antioxidant targets and then conducted gene ontology and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses. Molecular docking results show that astragalin, a compound isolated from GLs, had the highest level of connectivity in the compound-target network and was involved in inflammation-related biosynthesis by directly impacting cytokine gene expression and PTGS2 inhibition markers. These findings not only suggest that the compounds isolated from GLs can be developed as potential antioxidants, but also demonstrate the applicability of network pharmacology to assess the potential of foods for disease treatment.
RESUMEN
We have successfully prepared nanohybrids of biofunctional ferulic acid and layered double hydroxide nanomaterials through reconstruction and exfoliation-reassembly routes. From X-ray diffraction and infrared spectroscopy, both nanohybrids were determined to incorporate ferulic acid molecules in anionic form. Microscopic results showed that the nanohybrids had average particle size of 150 nm with plate-like morphology. As the two nanohybridization routes involved crystal disorder and random stacking of layers, the nanohybrids showed slight alteration in z-axis crystallinity and particle size. The zeta potential values of pristine and nanohybrids in deionized water were determined to be positive, while those in cell culture media shifted to negative values. According to the in vitro anticancer activity test on human cervical cancer HeLa cells, it was revealed that nanohybrids showed twice anticancer activity compared with ferulic acid itself. Therefore we could conclude that the nanohybrids of ferulic acid and layered double hydroxide had cellular delivery property of intercalated molecules on cancer cell lines.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Hidróxidos/química , Nanoestructuras/química , Células HeLa , Humanos , Tamaño de la Partícula , Espectrofotometría Infrarroja , Sales de Tetrazolio , Tiazoles , Difracción de Rayos XRESUMEN
Opuntia ficus-indica (OF) phytochemicals have received considerable attention because of their health benefits. However, the structure-activity relationship between saponin and flavonoid antioxidant compounds among secondary metabolites has rarely been reported. In a molecular docking study, selected compounds from both Opuntia ficus-indica callus (OFC) and OF ethanol extract were found to be involved in Toll-like receptor 4 and mitogen-activated protein kinase (MAPK) signaling pathways. High affinity was specific for MAPK, and it was proposed to inhibit the oxidative and inflammatory responses with poricoic acid H (-8.3 Kcal/mol) and rutin (-9.0 Kcal/mol). The pro-inflammatory cytokine factors at a concentration of 200 µg/mL were LPS-stimulated TNF-α (OFC 72.33 ng/mL, OF 66.78 ng/mL) and IL-1ß (OFC 49.10 pg/mL, OF 34.45 pg/mL), both of which significantly decreased OF (p < 0.01, p < 0.001). Taken together, increased NO, PGE2, and pro-inflammatory cytokines were significantly decreased in a dose-dependent manner in cells pretreated with OFC and the OF extract (p < 0.05). These findings suggest that OFC and OF have important potential as natural antioxidant, anti-inflammatory agents in health-promoting foods and medicine.
RESUMEN
Ginger, a plant widely consumed worldwide, is used as a spice or to enhance the flavor of foods. In this study, the taste characteristics (gingerol, shogaol, and amino acid) of extracts treated with various solubilizing methods were objectively compared. In addition, an E-nose confirmed the flavor pattern combined with principal component analysis (PCA) between each extract gas chromatogram-tandem mass spectrometry was performed to compare and analyze volatile compounds between extraction methods. As a result, high-pressure enzyme-assisted extraction (HPE) and hydrothermal enzyme-assisted extraction (HWE) treatment effectively improved the extraction yield of ginger and the contents of gingerol and shogaol and removed the bitter taste. In addition, radar charts of both E-nose and PCA provided the distribution of flavor substances in HPE and HWE products of ginger. After enzyme-assisted treatment, a strong fruity and piquant flavor was noted. In conclusion, it is suggested that ginger extract of enzyme-assisted treatment has increased flavor compounds and can be an excellent food material.
RESUMEN
The gingerols and shogaols derived from ginger have excellent antibacterial properties against oral bacteria. However, some researchers have noted their dose-dependent potential toxicity. The aim of this study was to enhance the biofunctionality and biocompatibility of the application of ginger to dental titanium screws. To increase the amount of coating of the n-hexane-fractionated ginger on the titanium surface and to control its release, ginger was loaded in different concentrations in a photo-crosslinkable GelMA hydrogel. To improve coating stability of the ginger hydrogel (GH), the wettability of the surface was modified by pre-calcification (TNC), then GH was applied on the surface. As a result, the ginger fraction, with a high content of phenolic compounds, was effective in the inhibition of the growth of S. mutans and P. gingivalis. The GH slowly released the main compounds of ginger and showed excellent antibacterial effects with the concentration. Although bone regeneration was slightly reduced with the ginger-loading concentration due to the increased contents of polyphenolic compounds, it was strongly supplemented through the promotion of osteosis formation by the hydrogel and TNC coating. Finally, we proved the biosafety and superior biofunctionalities the GH-TNC coating on a Ti implant. However, it is recommended to use an appropriate concentration, because an excessive concentration of ginger may affect the improved biocompatibility in clinical applications.
RESUMEN
Mulberry (Morus alba L.) fruit (MF) is a rich source of functional compounds, such as anthocyanin. However, during solvent extraction, these compounds are not fully dispersed into the substrate, leading to incomplete extraction. Moreover, raw MF rapidly ripens and deteriorates after harvesting; hence, innovative methods to process MF are needed. Here, a pectinase-assisted extraction method is developed to liberate polyphenols and anthocyanins from cell wall matrices in MF. We optimized the procedure to maximize water solubility index (WSI), total phenolic (TP) content, and total anthocyanin (TA) content using a central composite design to perform a response surface methodology (RSM) analysis. The optimal conditions predicted by the RSM were a 1:5 w/v material/water ratio with 3.5% pectinase (v/w) and 1.5% citric acid (w/w) for 113 min at 50°C. Under these conditions, the WSI, TP, and TA were significantly higher compared with those in the untreated control. The results well matched (within 5% differences) with the predicted RSM values. Furthermore, metabolite analysis revealed that the levels of cyanidin-3-O-glucoside, delphinidin hexoside, and quercetin were higher in pectinase-assisted MF extraction compared with the untreated control. This work demonstrated that pectinase-assisted extraction using citric acid could be an efficient technique to enhance the value of MF and its potential applications in the food industry. PRACTICAL APPLICATION: A pectinase-assisted extraction method was optimized to enhance the WSI, TP, and TA yields from MF extracts. The optimal conditions were predicted to be 1:5 w/v material/water ratio, 3.5% pectinase (v/w), and 1.5% CA (w/w) with a 113 min reaction time at 50°C. Under these conditions, WSI, TP, and TA were significantly increased compared with the untreated control. These results suggested the potential of mulberry plants for use in the food industry via the development of a simple, efficient process to extract functional compounds from MF.
Asunto(s)
Tecnología de Alimentos , Frutas , Morus , Extractos Vegetales , Antocianinas/química , Antocianinas/aislamiento & purificación , Tecnología de Alimentos/métodos , Frutas/química , Morus/química , Extractos Vegetales/análisis , Extractos Vegetales/aislamiento & purificación , Poligalacturonasa/metabolismo , Polifenoles/química , Polifenoles/aislamiento & purificaciónRESUMEN
BACKGROUND: Mulberry leaf (Morus alba L.) contains multiple bioactive ingredients and has been used in the treatment of obesity, diabetes, inflammation, and atherosclerosis. High hydrostatic pressure (HHP) processing has been developed for the extraction of bioactive compounds from plants. However, the hypocholesterolemic effect of the HHP extract from mulberry leaves and its underlying mechanism have never been investigated. OBJECTIVE: The specific aim of the present study was to investigate the hypocholesterolemic property of a novel extract obtained from mulberry leaves under HHP in rats. DESIGN: Sprague-Dawley rats were divided into four groups and fed either a normal diet (NOR), a high cholesterol diet containing 1% cholesterol and 0.5% cholic acid (HC), an HC diet containing 0.5% mulberry leaf extract (ML), or a 1% mulberry leaf extract (MH) for 4 weeks. RESULTS: High hydrostatic pressure extract of mulberry leaves significantly reduced the HC-increased serum levels of triglyceride (TG), cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), and hepatic contents of TG and TC. The HHP extraction from mulberry leaves also increased the HC-decreased fecal TC and bile acid levels without changing body weight, food intake, liver weight, and serum activities of alanine transaminase (ALT) and aspartate transaminase (AST) (P < 0.05). The mulberry leaf extract significantly enhanced the expression of hepatic genes such as cholesterol 7 alpha-hydroxylase (CYP7A1), liver X receptor alpha (LXRα), and ATP-binding cassette transporters, ABCG5/ABCG8, involved in hepatic bile acid synthesis and cholesterol efflux (P < 0.05). In addition, the HHP extraction of mulberry leaves significantly suppressed hepatic microRNA(miR)-33 expression and increased adenosine monophosphate-activated protein kinase (AMPK) activity. CONCLUSION: These results suggest that the HHP extract of mulberry leaves lowers serum cholesterol levels by partially increasing hepatic bile acid synthesis and fecal cholesterol excretion through the modulation of miR-33 expression and AMPK activation in the liver.
RESUMEN
The delivery of active probiotic cells in capsules can reduce probiotic cell loss induced by detrimental external factors during digestion. In this study, we determined the optimal conditions for the encapsulation of Weissella cibaria JW15 (JW15) within calcium and polyethylene glycol (PEG)-alginate with chicory root extract powder (CREP). JW15 was encapsulated as the core material (109 cells/mL, 2 mL/min), and a solution containing a mixture of 1.5% sodium alginate and 1% CREP was extruded into a receiving bath with 0.1 M calcium chloride (CaCl2 ) and 0.05% PEG. Capsule morphology and size were measured using optical microscopy. The optimal air pressure and frequency vibration for capsules containing alginate only (Al) were 200 mbar and 200 Hz, respectively and 100 mbar and 350 Hz for capsules containing alginate with CREP (Ch), respectively. The voltage for both capsules types was fixed at 1.35 kV. Then, the capsules were incubated in a simulated gastrointestinal (GI) system for 6 hr at 37 °C. The addition of PEG in a CaCl2 hardening solution led to degradation of the Ch capsule (Ch-PEG) and the release of cells into the small intestine vessel in the simulated GI system. By contrast, the cells were trapped within the Al capsules. Based on these data, effective encapsulation using alginate with CREP and PEG can enable JW15 to be released at a targeted anatomical site of activity within the GI system, thereby, enhancing the efficacy of probiotic cells. These protective effects can be leveraged during the development of probiotic products. PRACTICAL APPLICATION: Weissella cibaria JW15 (109 cells/mL) was encapsulated in biodegradable and biocompatible capsules, prepared by mixing 1.5% alginate with 1% chicory root extract powder (CREP) in 0.1 M CaCl2 and 0.05% PEG using an encapsulator. The optimal processing parameters were as follows: pressure, 100 mbar; vibration frequency, 350 Hz; voltage, 1.35 kV; and core flow rate, 2 mL/min. When the resulting capsules were subjected to a simulated gastrointestinal system for 6 hr, the cells were released into the small intestine, and up to 95% cell viability was preserved. These results suggest that capsules made from alginate with CREP and formulated using calcium and PEG are a promising delivery system for probiotic cells.
Asunto(s)
Alginatos/química , Cichorium intybus/química , Composición de Medicamentos/métodos , Extractos Vegetales/química , Probióticos/química , Weissella/química , Cápsulas/química , Cápsulas/metabolismo , Tracto Gastrointestinal/metabolismo , Humanos , Viabilidad Microbiana , Modelos Biológicos , Raíces de Plantas/química , Probióticos/metabolismoRESUMEN
The balloon flower (BF) is a potent natural source of phytochemical compounds and is associated with our health. The sprouting process is accompanied by significant changes in phytochemical compounds in comparison with their original plants. Even though many studies are conducted with BF, there are not yet reports of BF sprouts. In the present study, we determined the chemical composition and biological activity of BF sprouts that had been cultivated for 50 days. Kaempferol-3-O-galactoside and 1-O-caffeoylquinic acid were identified as major components of whole BF sprouts. The leaves/stems of the sprouts had higher total phenolic and flavonoid contents and lower IC50 values in DPPH⢠and ABTSâ¢+ scavenging assays than whole sprouts or roots. The roots of the sprouts had the highest polygalacin D content (1.44 mg/g). We also determined the effects of different parts of BF sprouts on RAW 264.7 macrophage cells. When these cells were stimulated with lipopolysaccharide (LPS), their nitrite and pro-inflammatory cytokine production increased. BF sprouts suppressed the LPS-induced production of nitrite, tumor necrosis factor-α, and interleukin-6 in a concentration-dependent manner without causing any cytotoxic effects. Nitrite and pro-inflammatory cytokine production were significantly inhibited by the roots and leaves/stems, respectively. The inhibitory effects of BF sprouts on LPS-stimulated inflammatory responses in RAW 264.7 macrophage cells were associated with suppressed NF-κB activation. These findings suggest that BF sprouts could be a valuable source of bioactive compounds and exert anti-inflammatory effects due to their polygalacin D, deapi-platycodin D3, and polyphenol content.
RESUMEN
Formation of the stable, strand separated, 'open' complex between RNA polymerase and a promoter involves DNA melting of approximately 14 base pairs. The likely nucleation site is the highly conserved -11A base in the non-template strand of the -10 promoter region. Amino acid residues Y430 and W433 on the sigma70 subunit of the RNA polymerase participate in the strand separation. The roles of -11A and of the Y430 and W433 were addressed by employing synthetic consensus promoters containing base analog and other substitutions at -11 in the non-template strand, and sigma70 variants bearing amino acid substitutions at positions 430 and 433. Substitutions for -11A and for Y430 and W433 in sigma70 have small or no effects on formation of the initial RNA polymerase-promoter complex, but exert their effects on subsequent steps on the way to formation of the open complex. As substitutions for Y430 and W433 also affect open complex formation on promoter DNA lacking the -11A base, it is concluded that these amino acid residues have other (or additional) roles, not involving the -11A. The effects of the substitutions at -11A of the promoter and Y430 and W433 of sigma70 are cumulative.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Factor sigma/química , Sustitución de Aminoácidos , ADN/química , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Heparina , Cinética , Conformación de Ácido Nucleico , Factor sigma/genética , Factor sigma/metabolismo , Moldes GenéticosRESUMEN
We prepared Zingiber officinale extract (ZOE) incorporated in a layered double hydroxide (LDH) hybrid through a reconstruction method in order to preserve the antioxidant activity of ZOE from ultrasound and microwave irradiation. X-ray patterns, infrared spectroscopy, and scanning electron microscopy suggested that ZOE moieties were encapsulated in the interparticle space of reconstructed LDH, thus preserving its intact structure. Dynamic light scattering and zeta-potential measurement also supported the hypothesis that ZOE moieties were located in the interparticle pore of LDH rather than at the surface of LDH particles. Thermogravimetry analysis revealed that thermal stability of encapsulated ZOE could be enhanced by LDH encapsulation. Radical scavenging assay showed that antioxidant activity of ZOE-LDH hybrid was increased after ultrasound and microwave irradiation, while ZOE itself dramatically lost its antioxidant activity upon ultrasound and microwave treatment.
RESUMEN
Probiotics are known to provide the host with immune-modulatory effects and are therefore of remarkable interest for therapeutic and prophylactic applications against various disorders, including inflammatory diseases. Weissella cibaria JW15 (JW15) has been reported to possess probiotic and antioxidant properties. However, the effect of JW15 on inflammatory responses has not yet been reported. Therefore, the objective of the current study was to evaluate the anti-inflammatory potential of JW15 against lipopolysaccharide (LPS) stimulation. The production of pro-inflammatory factors and the cellular signaling pathways following treatment with heat-killed JW15 was examined in LPS-induced RAW 264.7 cells. Treatment with heat-killed JW15 decreased nitric oxide and prostaglandin E2 production via downregulation of the inducible nitric oxide synthase and cyclooxygenase-2. In addition, treatment with heat-killed JW15 suppressed the expression of pro-inflammatory cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α. The anti-inflammatory properties of treating with heat-killed JW15 were associated with mitogen-activated protein kinase signaling pathwaymediated suppression of nuclear factor-κB. These results indicated that JW15 possesses antiinflammatory potential and provide a molecular basis regarding the development of functional probiotic products.
Asunto(s)
Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Probióticos/farmacología , Factor de Transcripción ReIA/metabolismo , Weissella/fisiología , Animales , Supervivencia Celular , Ciclooxigenasa 2/genética , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Alimentos Fermentados/microbiología , Lipopolisacáridos/toxicidad , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Fosforilación/efectos de los fármacos , Células RAW 264.7 , Transducción de Señal/efectos de los fármacosRESUMEN
The objective of this study was to evaluate the functional properties of Weissella cibaria JW15 (JW15) by investigating its antagonistic and antioxidant activities. Lactobacillus rhamnosus GG (LGG) was used for comparison as a reference strain. JW15 inhibited the growth of pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, S. Enteritidis, and Escherichia coli). Compared to LGG, JW15 showed rapid organic acid production, with the amounts of lactic and acetic acids being lower and higher, respectively. In addition, JW15 significantly inhibited intestinal epithelial adherence in the tested pathogens. JW15 exhibited antioxidant effects by scavenging radicals including DPPH, ABTS, and hydroxyl radicals, and inhibiting lipid peroxidation. JW15 exhibited significant antagonistic and antioxidant activities compared to LGG in the tested assay (p < 0.05). The results suggested that JW15 might possess a potential for amelioration of disorders induced by pathogenic bacteria or oxidative stress.
RESUMEN
We prepared hybrids consisting of Angelica gigas Nakai (AGN) root or flower extract and layered double hydroxide (LDH) for potential anticancer nanomedicine, as decursin species (DS) in AGN are known to have anticancer activity. Dimethylsulfoxide solvent was determined hybridization reaction media, as it has affinity to both AGN and LDH moiety. In order to develop inter-particle spaces in LDH, a reversible dehydration-rehydration, so-called reconstruction route, was applied in AGN-LDH hybridization. Quantitative analyses on AGN-LDH hybrids indicated that the content of DS was two times more concentrated in the hybrids than in extract itself. Using X-ray diffraction, FT-IR spectroscopy, scanning electron microscopy, and zeta-potential measurement, we found that AGN extract moiety was incorporated into inter-particle spaces of LDH nanoparticles during the reconstruction reaction. Time-dependent DS release from hybrids at pH 7.4 (physiological condition) and pH 4.5 (lysosomal condition) exhibited a pH-dependent release of extract-incorporated LDH hybrids. An anticancer activity test using HeLa, A549, and HEK293T cells showed that the AGN-LDH hybrid, regardless of extract type, showed enhanced anticancer activity compared with extract alone at an equivalent amount of DS, suggesting a nanomedicine effect of AGN-LDH hybrids.
RESUMEN
Dietary supplementation with lactic acid bacteria to maintain or improve intestinal health is advocated. Weissella spp. are present in different fermented vegetable-based foods like kimchi, as well as in the normal gastrointestinal (GI) tract of humans. Weissella cibaria strains have been proposed as potential probiotics. Freeze-drying is a promising treatment method for these strains for industrial applications and to increase the accessibility of their health-promoting benefits. Moreover, probiotic strains need to be able to survive in the host GI tract, and acid and bile are both environmental stressors that can reduce strain survival. Therefore, this study evaluated the effect of the combination of protective agents on the acid and bile resistance of W. cibaria JW15 after freeze-drying. A protective agent combination with a 1:1 ratio of 5 g + 5 g/100 ml w/v soy flour + yeast extract (SFY) retained nearly 100% viability after freeze-drying and was resistant to artificial bile acids. Remarkably, skim milk + soy flour (SSF) was resistant to an acidic solution, and the viability of W. cibaria JW15 in artificial gastric acid was enhanced when treated with this mixture. Furthermore, SFY and SSF were found to maintain high numbers of viable cells with a low specific rate of cell death (k) after storage at 50°C, 60°C, and 70°C. These results support an effective probiotic formulation system with a high number of viable cells, and its protective effects can be leveraged in the development of probiotic products with health benefits.
RESUMEN
OBJECTIVES/HYPOTHESIS: High-mobility group box 1 (HMGB1) is a chromatin-binding protein located in the cell nucleus. Following injury, immunocompetent cells secrete HMGB1 to the extracellular milieu under the stimulation of proinflammatory cytokines. Extracellular HMGB1 acts a danger signal that instigates the innate immunity and tissue repair. We previously reported HMGB1 in the vocal fold extracellular compartment between day 3 and day 7 following surgical injury. In this study, we further investigated the cell source of HMGB1 and the relationship of proinflammatory cytokine expression and HMGB1 translocation in wounded vocal folds. STUDY DESIGN: Prospective animal study. METHODS: Bilateral vocal fold injury was performed on 122 Sprague-Dawley rats. An additional 18 rats served as uninjured controls. Animals were sacrificed at multiple time points up to 4 weeks after surgery. Immunohistochemical costaining was performed to identify the cell source of HMGB1. Cell markers ED1, fibroblast-specific protein 1 (FSP1), and alpha smooth muscle actin (α-SMA) were used to identify macrophages, fibroblasts, and myofibroblasts, respectively. Enzyme-linked immunosorbent assays were performed to measure cytokine levels of interleukin-1beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) in vocal fold tissue. RESULTS: Costaining of HMGB1 was strong with ED1 and FSP1 but was minimal with α-SMA in injured vocal folds. Compared to uninjured controls, IL-1ß and TNF-α expression increased significantly the first 2 days after injury. CONCLUSIONS: Macrophages and fibroblasts were a major cell source of vocal fold HMGB1. Translocation of HMGB1 may be an active response to the early accumulation of IL-1ß and TNF-α in the wounded vocal folds. LEVEL OF EVIDENCE: NA Laryngoscope, 127:E193-E200, 2017.