RESUMEN
In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.
Asunto(s)
Enfermedad Celíaca , Duodeno , Interleucina-7 , Mucosa Intestinal , Modelos Biológicos , Organoides , Humanos , Autoanticuerpos/inmunología , Autoinmunidad , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biopsia , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/patología , Enfermedad Celíaca/metabolismo , Duodeno/inmunología , Duodeno/patología , Duodeno/metabolismo , Epítopos/inmunología , Glútenes/inmunología , Glútenes/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/metabolismo , Interleucina-7/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Células Asesinas Naturales/inmunología , Células Mieloides/inmunología , Organoides/inmunología , Organoides/metabolismo , Organoides/patología , Proteína Glutamina Gamma Glutamiltransferasa 2/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.
Asunto(s)
COVID-19/virología , Pulmón/citología , Modelos Biológicos , Organoides/citología , Organoides/virología , SARS-CoV-2/fisiología , Técnicas de Cultivo de Tejidos , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , COVID-19/metabolismo , COVID-19/patología , Diferenciación Celular , División Celular , Células Clonales/citología , Células Clonales/metabolismo , Células Clonales/virología , Humanos , Técnicas In Vitro , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Integrina alfa6/análisis , Integrina beta4/análisis , Queratina-5/análisis , Organoides/metabolismo , Neumonía Viral/metabolismo , Neumonía Viral/patología , Neumonía Viral/virología , SARS-CoV-2/crecimiento & desarrollo , Análisis de la Célula Individual , Receptor de TWEAK/análisisRESUMEN
Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate development [R. T. Moon et al, Development 119, 97-111 (1993); I. Oishi et al, Genes Cells 8, 645-654 (2003)], but its downstream signaling events remain poorly understood. Through a large-scale proteomic screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a ß-catenin-independent, ubiquitin-proteasome system-dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, Casein kinase 1, and Glycogen synthase kinase 3 that regulates Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-terminal LNX3H domain [M. Flynn, O. Saha, P. Young, BMC Evol. Biol. 11, 235 (2011)], which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work establishes a Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.
Asunto(s)
Proteómica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt , Proteína Wnt-5a/metabolismo , Animales , Movimiento Celular , Ratones , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos , Proteolisis , Reproducibilidad de los Resultados , Ubiquitina/metabolismoRESUMEN
Tissue-resident immunity underlies essential host defenses against pathogens, but analysis in humans has lacked in vitro model systems where epithelial infection and accompanying resident immune cell responses can be observed en bloc. Indeed, human primary epithelial organoid cultures typically omit immune cells, and human tissue resident-memory lymphocytes are conventionally assayed without an epithelial infection component, for instance from peripheral blood, or after extraction from organs. Further, the study of resident immunity in animals can be complicated by interchange between tissue and peripheral immune compartments. To study human tissue-resident infectious immune responses in isolation from secondary lymphoid organs, we generated adult human lung three-dimensional air-liquid interface (ALI) lung organoids from intact tissue fragments that co-preserve epithelial and stromal architecture alongside endogenous lung-resident immune subsets. These included T, B, NK and myeloid cells, with CD69+CD103+ tissue-resident and CCR7- and/or CD45RA- TRM and conservation of T cell receptor repertoires, all corresponding to matched fresh tissue. SARS-CoV-2 vigorously infected organoid lung epithelium, alongside secondary induction of innate cytokine production that was inhibited by antiviral agents. Notably, SARS-CoV-2-infected organoids manifested adaptive virus-specific T cell activation that was specific for seropositive and/or previously infected donor individuals. This holistic non-reconstitutive organoid system demonstrates the sufficiency of lung to autonomously mount adaptive T cell memory responses without a peripheral lymphoid component, and represents an enabling method for the study of human tissue-resident immunity.
RESUMEN
Cystic fibrosis (CF) is a monogenic disorder caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Mortality in CF patients is mostly due to respiratory sequelae. Challenges with gene delivery have limited attempts to treat CF using in vivo gene therapy, and low correction levels have hindered ex vivo gene therapy efforts. We have used Cas9 and adeno-associated virus 6 to correct the ΔF508 mutation in readily accessible upper-airway basal stem cells (UABCs) obtained from CF patients. On average, we achieved 30%-50% allelic correction in UABCs and bronchial epithelial cells (HBECs) from 10 CF patients and observed 20%-50% CFTR function relative to non-CF controls in differentiated epithelia. Furthermore, we successfully embedded the corrected UABCs on an FDA-approved porcine small intestinal submucosal membrane (pSIS), and they retained differentiation capacity. This study supports further development of genetically corrected autologous airway stem cell transplant as a treatment for CF.
Asunto(s)
Fibrosis Quística , Animales , Diferenciación Celular , Fibrosis Quística/genética , Fibrosis Quística/terapia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales , Epitelio , Humanos , Células Madre , PorcinosRESUMEN
The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange and is affected by disorders including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. Investigations of these localized pathologies have been hindered by a lack of 3D in vitro human distal lung culture systems. Further, human distal lung stem cell identification has been impaired by quiescence, anatomic divergence from mouse and lack of lineage tracing and clonogenic culture. Here, we developed robust feeder-free, chemically-defined culture of distal human lung progenitors as organoids derived clonally from single adult human alveolar epithelial type II (AT2) or KRT5 + basal cells. AT2 organoids exhibited AT1 transdifferentiation potential, while basal cell organoids progressively developed lumens lined by differentiated club and ciliated cells. Organoids consisting solely of club cells were not observed. Upon single cell RNA-sequencing (scRNA-seq), alveolar organoids were composed of proliferative AT2 cells; however, basal organoid KRT5 + cells contained a distinct ITGA6 + ITGB4 + mitotic population whose proliferation segregated to a TNFRSF12A hi subfraction. Clonogenic organoid growth was markedly enriched within the TNFRSF12A hi subset of FACS-purified ITGA6 + ITGB4 + basal cells from human lung or derivative organoids. In vivo, TNFRSF12A + cells comprised ~10% of KRT5 + basal cells and resided in clusters within terminal bronchioles. To model COVID-19 distal lung disease, we everted the polarity of basal and alveolar organoids to rapidly relocate differentiated club and ciliated cells from the organoid lumen to the exterior surface, thus displaying the SARS-CoV-2 receptor ACE2 on the outwardly-facing apical aspect. Accordingly, basal and AT2 apical-out organoids were infected by SARS-CoV-2, identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung alveolar and basal stem cells, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and exemplifies progenitor identification within a slowly proliferating human tissue. Further, our studies establish a facile in vitro organoid model for human distal lung infectious diseases including COVID-19-associated pneumonia.
RESUMEN
Noncanonical WNT pathways function independently of the ß-catenin transcriptional co-activator to regulate diverse morphogenetic and pathogenic processes. Recent studies showed that noncanonical WNTs, such as WNT5A, can signal the degradation of several downstream effectors, thereby modulating these effectors' cellular activities. The protein domain(s) that mediates the WNT5A-dependent degradation response, however, has not been identified. By coupling protein mutagenesis experiments with a flow cytometry-based degradation reporter assay, we have defined a protein domain in the kinesin superfamily protein KIF26B that is essential for WNT5A-dependent degradation. We found that a human disease-causing KIF26B mutation located at a conserved amino acid within this domain compromises the ability of WNT5A to induce KIF26B degradation. Using pharmacological perturbation, we further uncovered a role of glycogen synthase kinase 3 (GSK3) in WNT5A regulation of KIF26B degradation. Lastly, based on the identification of the WNT5A-responsive domain, we developed a new reporter system that allows for efficient profiling of WNT5A-KIF26B signaling activity in both somatic and stem cells. In conclusion, our study identifies a new protein domain that mediates WNT5A-dependent degradation of KIF26B and provides a new tool for functional characterization of noncanonical WNT5A signaling in cells.
RESUMEN
Wnt5a-Ror signaling constitutes a developmental pathway crucial for embryonic tissue morphogenesis, reproduction and adult tissue regeneration, yet the molecular mechanisms by which the Wnt5a-Ror pathway mediates these processes are largely unknown. Using a proteomic screen, we identify the kinesin superfamily protein Kif26b as a downstream target of the Wnt5a-Ror pathway. Wnt5a-Ror, through a process independent of the canonical Wnt/ß-catenin-dependent pathway, regulates the cellular stability of Kif26b by inducing its degradation via the ubiquitin-proteasome system. Through this mechanism, Kif26b modulates the migratory behavior of cultured mesenchymal cells in a Wnt5a-dependent manner. Genetic perturbation of Kif26b function in vivo caused embryonic axis malformations and depletion of primordial germ cells in the developing gonad, two phenotypes characteristic of disrupted Wnt5a-Ror signaling. These findings indicate that Kif26b links Wnt5a-Ror signaling to the control of morphogenetic cell and tissue behaviors in vertebrates and reveal a new role for regulated proteolysis in noncanonical Wnt5a-Ror signal transduction.