Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Breast Cancer Res ; 25(1): 10, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703228

RESUMEN

Necroptosis is a form of regulated necrosis and is executed by MLKL when MLKL is engaged in triggering the rupture of cell plasma membrane. MLKL activation also leads to the protease, ADAMs-mediated ectodomain shedding of cell surface proteins of necroptotic cells. Tumor necroptosis often happens in advanced solid tumors, and blocking necroptosis by MLKL deletion in breast cancer dramatically reduces tumor metastasis. It has been suggested that tumor necroptosis affects tumor progression through modulating the tumor microenvironment. However, the exact mechanism by which tumor necroptosis promotes tumor metastasis remains elusive. Here, we report that the ectodomain shedding of cell surface proteins of necroptotic cells is critical for the promoting effect of tumor necroptosis in tumor metastasis through inhibiting the anti-tumor activity of T cells. We found that blocking tumor necroptosis by MLKL deletion led to the dramatic reduction of tumor metastasis and significantly elevated anti-tumor activity of tumor-infiltrating and peripheral blood T cells. Importantly, the increased anti-tumor activity of T cells is a key cause for the reduced metastasis as the depletion of CD8+ T cells completely restored the level of metastasis in the Mlkl KO mice. Interestingly, the levels of some soluble cell surface proteins including sE-cadherin that are known to promote metastasis are also dramatically reduced in MLKL null tumors/mice. Administration of ADAMs pan inhibitor reduces the levels of soluble cell surface proteins in WT tumors/mice and leads to the dramatic decrease in metastasis. Finally, we showed the sE-cadherin/KLRG1 inhibitory receptor is the major pathway for necroptosis-mediated suppression of the anti-tumor activity of T cells and the promotion of metastasis. Hence, our study reveals a novel mechanism of tumor necroptosis-mediated promotion of metastasis and suggests that tumor necroptosis and necroptosis-activated ADAMs are potential targets for controlling metastasis.


Asunto(s)
Neoplasias de la Mama , Proteínas de la Membrana , Necroptosis , Metástasis de la Neoplasia , Animales , Ratones , Cadherinas , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/farmacología , Microambiente Tumoral , Neoplasias de la Mama/patología
2.
Nat Immunol ; 11(9): 799-805, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20711193

RESUMEN

MicroRNAs are key regulators of many biological processes, including cell differentiation. Here we show that during human monocyte-macrophage differentiation, expression of the microRNAs miR-223, miR-15a and miR-16 decreased considerably, which led to higher expression of the serine-threonine kinase IKKalpha in macrophages. In macrophages, higher IKKalpha expression in conjunction with stabilization of the kinase NIK induced larger amounts of p52. Because of low expression of the transcription factor RelB in untreated macrophages, high p52 expression repressed basal transcription of both canonical and noncanonical NF-kappaB target genes. However, proinflammatory stimuli in macrophages resulted in greater induction of noncanonical NF-kappaB target genes. Thus, a decrease in certain microRNAs probably prevents macrophage hyperactivation yet primes the macrophage for certain responses to proinflammatory stimuli.


Asunto(s)
Diferenciación Celular/inmunología , Regulación del Desarrollo de la Expresión Génica , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Macrófagos/inmunología , MicroARNs/inmunología , FN-kappa B/inmunología , Células Cultivadas , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Macrófagos/citología , FN-kappa B/genética , Transducción de Señal , Células U937 , Regulación hacia Arriba
3.
Nat Immunol ; 9(9): 1047-54, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18641653

RESUMEN

The physiological function of the adaptor protein TRADD remains unclear because of the unavailability of a TRADD-deficient animal model. By generating TRADD-deficient mice, we found here that TRADD serves an important function in tumor necrosis factor receptor 1 (TNFR1) signaling by orchestrating the formation of TNFR1 signaling complexes. TRADD was essential for TNFR1 signaling in mouse embryonic fibroblasts but was partially dispensable in macrophages; abundant expression of the adaptor RIP in macrophages may have allowed some transmission of TNFR1 signals in the absence of TRADD. Although morphologically normal, TRADD-deficient mice were resistant to toxicity induced by TNF, lipopolysaccharide and polyinosinic-polycytidylic acid. TRADD was also required for TRIF-dependent Toll-like receptor signaling in mouse embryonic fibroblasts but not macrophages. Our findings definitively establish the biological function of TRADD in TNF signaling.


Asunto(s)
Transducción de Señal , Proteína de Dominio de Muerte Asociada a Receptor de TNF/deficiencia , Factor 1 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/fisiología , Animales , Fibroblastos/metabolismo , Macrófagos/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Ubiquitina/metabolismo
4.
Cell Commun Signal ; 18(1): 161, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33036630

RESUMEN

BACKGROUND: Toll-like receptor 3 (TLR3) ligand which activates TLR3 signaling induces both cancer cell death and activates anti-tumor immunity. However, TLR3 signaling can also harbor pro-tumorigenic consequences. Therefore, we examined the status of TLR3 in cholangiocarcinoma (CCA) cases to better understand TLR3 signaling and explore the potential therapeutic target in CCA. METHODS: The expression of TLR3 and receptor-interacting protein kinase 1 (RIPK1) in primary CCA tissues was assayed by Immunohistochemical staining and their associations with clinicopathological characteristics and survival data were evaluated. The effects of TLR3 ligand, Poly(I:C) and Smac mimetic, an IAP antagonist on CCA cell death and invasion were determined by cell death detection methods and Transwell invasion assay, respectively. Both genetic and pharmacological inhibition of RIPK1, RIPK3 and MLKL and inhibitors targeting NF-κB and MAPK signaling were used to investigate the underlying mechanisms. RESULTS: TLR3 was significantly higher expressed in tumor than adjacent normal tissues. We demonstrated in a panel of CCA cell lines that TLR3 was frequently expressed in CCA cell lines, but was not detected in a nontumor cholangiocyte. Subsequent in vitro study demonstrated that Poly(I:C) specifically induced CCA cell death, but only when cIAPs were removed by Smac mimetic. Cell death was also switched from apoptosis to necroptosis when caspases were inhibited in CCA cells-expressing RIPK3. In addition, RIPK1 was required for Poly(I:C) and Smac mimetic-induced apoptosis and necroptosis. Of particular interest, high TLR3 or low RIPK1 status in CCA patients was associated with more invasiveness. In vitro invasion demonstrated that Poly(I:C)-induced invasion through NF-κB and MAPK signaling. Furthermore, the loss of RIPK1 enhanced Poly(I:C)-induced invasion and ERK activation in vitro. Smac mimetic also reversed Poly(I:C)-induced invasion, partly mediated by RIPK1. Finally, a subgroup of patients with high TLR3 and high RIPK1 had a trend toward longer disease-free survival (p = 0.078, 28.0 months and 10.9 months). CONCLUSION: RIPK1 plays a pivotal role in TLR3 ligand, Poly(I:C)-induced cell death when cIAPs activity was inhibited and loss of RIPK1 enhanced Poly(I:C)-induced invasion which was partially reversed by Smac mimetic. Our results suggested that TLR3 ligand in combination with Smac mimetic could provide therapeutic benefits to the patients with CCA. Video abstract.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Proteínas Mitocondriales/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptor Toll-Like 3/metabolismo , Anciano , Caspasa 8/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Ligandos , Masculino , Modelos Biológicos , Necroptosis/efectos de los fármacos , Invasividad Neoplásica , Poli I-C/farmacología , Análisis de Supervivencia
5.
Mol Cell ; 42(5): 597-609, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21658601

RESUMEN

The regulation of apoptosis is critical for controlling tissue homeostasis and preventing tumor formation and growth. Reactive oxygen species (ROS) generation plays a key role in such regulation. Here, we describe a HIF-1 target, Vasn/ATIA (anti-TNFα-induced apoptosis), which protects cells against TNFα- and hypoxia-induced apoptosis. Through the generation of ATIA knockout mice, we show that ATIA protects cells from apoptosis through regulating the function of the mitochondrial antioxidant, thioredoxin-2, and ROS generation. ATIA is highly expressed in human glioblastoma, and ATIA knockdown in glioblastoma cells renders them sensitive to hypoxia-induced apoptosis. Therefore, ATIA is not only a HIF-1 target that regulates mitochondrial redox pathways but also a potentially diagnostic marker and therapeutic target in human glioblastoma.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Apoptosis , Proteínas Portadoras/fisiología , Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de la Membrana/fisiología , Tiorredoxinas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/análisis , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Portadoras/química , Proteínas Portadoras/genética , Hipoxia de la Célula , Línea Celular Tumoral , Membrana Celular/metabolismo , Glioblastoma/metabolismo , Humanos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Tiorredoxinas/genética
6.
PLoS Genet ; 12(8): e1006244, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27541266

RESUMEN

Cancer-associated fibroblasts (CAFs), the most common constituent of the tumor stoma, are known to promote tumor initiation, progression and metastasis. However, the mechanism of how cancer cells transform normal fibroblasts (NFs) into CAFs is largely unknown. In this study, we determined the contribution of miRNAs in the transformation of NFs into CAFs. We found that miR-1 and miR-206 were down-regulated, whereas miR-31 was up-regulated in lung CAFs when compared with matched NFs. Importantly, modifying the expression of these three deregulated miRNAs induced a functional conversion of NFs into CAFs and vice versa. When the miRNA-reprogrammed NFs and CAFs were co-cultured with lung cancer cells (LCCs), a similar pattern of cytokine expression profiling were observed between two groups. Using a combination of cytokine expression profiling and miRNAs algorithms, we identified VEGFA/CCL2 and FOXO3a as direct targets of miR-1, miR-206 and miR-31, respectively. Importantly, systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 significantly inhibited tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. Our results show that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in LCCs-mediated NFs into CAFs, which may have clinical implications for providing novel biomarker(s) and potential therapeutic target(s) of lung cancer in the future.


Asunto(s)
Quimiocina CCL2/biosíntesis , Neoplasias Pulmonares/genética , MicroARNs/biosíntesis , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Reprogramación Celular/genética , Quimiocina CCL2/genética , Proteína Forkhead Box O3/biosíntesis , Proteína Forkhead Box O3/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , MicroARNs/genética , Metástasis de la Neoplasia , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/genética
7.
J Biol Chem ; 291(38): 20030-41, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27489105

RESUMEN

NADPH oxidases (NOXs) are involved in inflammation, angiogenesis, tumor growth, and osteoclast differentiation. However, the role of NOX1 and NOX2 in macrophage differentiation and tumor progression is still elusive. Here we report that NOX1 and NOX2 are critical for the differentiation of monocytes to macrophages, the polarization of M2-type but not M1-type macrophages, and the occurrence of tumor-associated macrophages (TAMs). We found that deletion of both NOX1 and NOX2 led to a dramatic decrease in ROS production in macrophages and resulted in impaired efficiency in monocyte-to-macrophage differentiation and M2-type macrophage polarization. We further showed that NOX1 and NOX2 were critical for the activation of the MAPKs JNK and ERK during macrophage differentiation and that the deficiency of JNK and ERK activation was responsible for the failure of monocyte-to-macrophage differentiation, in turn affecting M2 macrophage polarization. Furthermore, we demonstrated that the decrease in M2 macrophages and TAMs, concomitant with the reduction of cytokine and chemokine secretion, contributed to the delay in wound healing and the inhibition of tumor growth and metastasis in NOX1/2 double knockout mice compared with WT mice. Collectively, these data provide direct evidence that NOX1 and NOX2 deficiency impairs macrophage differentiation and the occurrence of M2-type TAMs during tumor development.


Asunto(s)
Diferenciación Celular/inmunología , Macrófagos/inmunología , Glicoproteínas de Membrana/inmunología , Monocitos/inmunología , NADH NADPH Oxidorreductasas/inmunología , NADPH Oxidasas/inmunología , Especies Reactivas de Oxígeno/inmunología , Animales , Diferenciación Celular/genética , Quimiocinas/genética , Quimiocinas/inmunología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/enzimología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Monocitos/enzimología , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(14): 5322-7, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22421439

RESUMEN

Tumor necrosis factor (TNF) is an important inflammatory cytokine and induces many cellular responses, including inflammation, cell proliferation, apoptosis, and necrosis. It is known that receptor interacting protein (RIP) kinases, RIP1 and RIP3, are key effectors of TNF-induced necrosis, but little is known about how these two RIP kinases mediate this process, although reactive oxygen species (ROS) generation and JNK activation have been suggested to be two downstream events of RIP kinases. Here we report the identification of mixed lineage kinase domain-like, MLKL, as a key RIP3 downstream component of TNF-induced necrosis. Through screening a kinase/phosphatase shRNA library in human colon adenocarcinoma HT-29 cells, we found that knockdown of MLKL blocked TNF-induced necrosis. Our data suggest that MLKL functions downstream of RIP1 and RIP3 and is recruited to the necrosome through its interaction with RIP3. Finally, we found that MLKL is required for the generation of ROS and the late-phase activation of JNK during TNF-induced necrosis. However, because these two events are not involved in TNF-induced necrosis in HT-29 cells, the target of MLKL during TNF-induced necrosis remains elusive. Taken together, our study suggests that MLKL is a key RIP3 downstream component of TNF-induced necrotic cell death.


Asunto(s)
Necrosis , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Secuencia de Bases , Línea Celular , Cartilla de ADN , Activación Enzimática , Humanos , MAP Quinasa Quinasa 4/metabolismo , Fosforilación , Reacción en Cadena de la Polimerasa , Especies Reactivas de Oxígeno/metabolismo
9.
Blood ; 119(12): 2895-905, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22223827

RESUMEN

Monocytes are programmed to undergo apoptosis in the absence of stimulation. Stimuli that promote monocyte-macrophage differentiation not only cause cellular changes, but also prevent the default apoptosis of monocytes. In the present study, we demonstrate that autophagy is induced when monocytes are triggered to differentiate and that the induction of autophagy is pivotal for the survival and differentiation of monocytes. We also show that inhibition of autophagy results in apoptosis of cells that are engaged in differentiation. We found that the differentiation signal releases Beclin1 from Bcl-2 by activating JNK and blocks Atg5 cleavage, both of which are critical for the induction of autophagy. Preventing autophagy induction hampers differentiation and cytokine production; therefore, autophagy is an important transition from monocyte apoptosis to differentiation.


Asunto(s)
Autofagia/fisiología , Diferenciación Celular/fisiología , Macrófagos/citología , Monocitos/citología , Animales , Western Blotting , Células Cultivadas , Citometría de Flujo , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica de Transmisión , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología
10.
J Immunol ; 186(9): 5212-6, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21421854

RESUMEN

TNFR-associated death domain protein (TRADD) is a key effector protein of TNFR1 signaling. However, the role of TRADD in other death receptor (DR) signaling pathways, including DR3, has not been completely characterized. Previous studies using overexpression systems suggested that TRADD is recruited to the DR3 complex in response to the DR3 ligand, TNF-like ligand 1A (TL1A), indicating a possible role in DR3 signaling. Using T cells from TRADD knockout mice, we demonstrate in this study that the response of both CD4(+) and CD8(+) T cells to TL1A is dependent upon the presence of TRADD. TRADD knockout T cells therefore lack the appropriate proliferative response to TL1A. Moreover, in the absence of TRADD, both the stimulation of MAPK signaling and activation of NF-κB in response to TL1A are dramatically reduced. Unsurprisingly, TRADD is required for recruitment of receptor interacting protein 1 and TNFR-associated factor 2 to the DR3 signaling complex and for the ubiquitination of receptor interacting protein 1. Thus, our findings definitively establish an essential role of TRADD in DR3 signaling.


Asunto(s)
Activación de Linfocitos/inmunología , Miembro 25 de Receptores de Factores de Necrosis Tumoral/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Proteína de Dominio de Muerte Asociada a Receptor de TNF/inmunología , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/inmunología , Animales , Western Blotting , Separación Celular , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , Inmunoprecipitación , Ratones , Ratones Noqueados , Miembro 25 de Receptores de Factores de Necrosis Tumoral/metabolismo , Linfocitos T/metabolismo , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
11.
Trends Cancer ; 8(1): 21-27, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34627742

RESUMEN

Necroptosis, a form of programmed necrotic cell death, is a gatekeeper of host defense against certain pathogen invasions. The deregulation of necroptosis is also a key factor of many inflammatory diseases. Recent studies have revealed an important role of necroptosis in tumorigenesis and metastasis and imply the potential of targeting necroptosis as a novel cancer therapy. While its molecular mechanism has been well studied, details of the regulation and function of necroptosis of tumor cells in tumorigenesis and metastasis only began to emerge recently, and we discuss these herein.


Asunto(s)
Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Apoptosis/genética , Humanos , Necroptosis/genética , Necrosis , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
12.
Methods Mol Biol ; 2248: 73-80, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33185868

RESUMEN

Tumor necrosis factor (TNF) plays a key role in inflammatory responses and in various cellular events such as apoptosis and necroptosis. The interaction of TNF with its receptor, TNFR1, drives the initiation of complex molecular pathways leading to inflammation and cell death. RARγ is released from the nucleus to orchestrate the formation of the cytosolic death complexes, and it is cytosolic RARγ that plays a pivotal role in switching TNF-induced inflammatory responses to RIPK1-initiated cell death. Thus, RARγ provides a checkpoint for the transition from inflammatory signaling to death machinery of RIPK1-initiated cell death in response to TNF. Here, we use techniques to identify RARγ as a downstream mediator of TNFR1 signaling complex. We use confocal imaging to show the localization of RARγ upon activation of cell death. Immunoprecipitation of RARγ identified the interacting proteins.


Asunto(s)
Apoptosis , Inflamación/etiología , Inflamación/metabolismo , Transducción de Señal , Factores de Necrosis Tumoral/metabolismo , Animales , Apoptosis/genética , Biomarcadores , Western Blotting , Línea Celular , Susceptibilidad a Enfermedades , Humanos , Inmunoprecipitación , Inflamación/patología , Factores de Necrosis Tumoral/genética
13.
Nat Commun ; 12(1): 2666, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976222

RESUMEN

Tumor necrosis happens commonly in advanced solid tumors. We reported that necroptosis plays a major role in tumor necrosis. Although several key necroptosis regulators including receptor interacting protein kinase 1 (RIPK1) have been identified, the regulation of tumor necroptosis during tumor development remains elusive. Here, we report that Z-DNA-binding protein 1 (ZBP1), not RIPK1, mediates tumor necroptosis during tumor development in preclinical cancer models. We found that ZBP1 expression is dramatically elevated in necrotic tumors. Importantly, ZBP1, not RIPK1, deletion blocks tumor necroptosis during tumor development and inhibits metastasis. We showed that glucose deprivation triggers ZBP1-depedent necroptosis in tumor cells. Glucose deprivation causes mitochondrial DNA (mtDNA) release to the cytoplasm and the binding of mtDNA to ZBP1 to activate MLKL in a BCL-2 family protein, NOXA-dependent manner. Therefore, our study reveals ZBP1 as the key regulator of tumor necroptosis and provides a potential drug target for controlling tumor metastasis.


Asunto(s)
Neoplasias de la Mama/genética , Necroptosis/genética , Proteínas de Unión al ARN/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Células HEK293 , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteínas de Unión al ARN/metabolismo , Tratamiento con ARN de Interferencia/métodos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
14.
PLoS One ; 15(1): e0227454, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31914150

RESUMEN

Cholangiocarcinoma (CCA), a malignant tumor originating in the biliary tract, is well known to be associated with adverse clinical outcomes and high mortality rates due to the lack of effective therapy. Evasion of apoptosis is considered a key contributor to therapeutic success and chemotherapy resistance in CCA, highlighting the need for novel therapeutic strategies. In this study, we demonstrated that the induction of necroptosis, a novel regulated form of necrosis, could potentially serve as a novel therapeutic approach for CCA patients. The RNA sequencing data in The Cancer Genome Atlas (TCGA) database were analyzed and revealed that both receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL), two essential mediators of necroptosis, were upregulated in CCA tissues when compared with the levels in normal bile ducts. We demonstrated in a panel of CCA cell lines that RIPK3 was differentially expressed in CCA cell lines, while MLKL was more highly expressed in CCA cell lines than in nontumor cholangiocytes. We therefore showed that treatment with both tumor necrosis factor-α (TNF-α) and Smac mimetic, an inhibitor of apoptosis protein (IAP) antagonist, induced RIPK1/RIPK3/MLKL-dependent necroptosis in CCA cells when caspases were blocked. The necroptotic induction in a panel of CCA cells was correlated with RIPK3 expression. Intriguingly, we demonstrated that Smac mimetic sensitized CCA cells to a low dose of standard chemotherapy, gemcitabine, and induced necroptosis in an RIPK1/RIPK3/MLKL-dependent manner upon caspase inhibition but not in nontumor cholangiocytes. We further demonstrated that Smac mimetic and gemcitabine synergistically induced an increase in TNF-α mRNA levels and that Smac mimetic reversed gemcitabine-induced cell cycle arrest, leading to cell killing. Collectively, our present study demonstrated that TNF-α and gemcitabine induced RIPK1/RIPK3/MLKL-dependent necroptosis upon IAP depletion and caspase inhibition; therefore, our findings have pivotal implications for designing a novel necroptosis-based therapeutic strategy for CCA patients.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Desoxicitidina/análogos & derivados , Necroptosis/efectos de los fármacos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Triazoles/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Neoplasias del Sistema Biliar/metabolismo , Neoplasias del Sistema Biliar/patología , Inhibidores de Caspasas/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Desoxicitidina/farmacología , Sinergismo Farmacológico , Humanos , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Gemcitabina
15.
Transl Oncol ; 13(1): 32-41, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31760267

RESUMEN

BACKGROUND: Escaping cell death pathways is an important event during carcinogenesis. We previously identified anti-TNFα-induced apoptosis (ATIA, also known as vasorin) as an antiapoptotic factor that suppresses reactive oxygen species (ROS) production. However, the role of vasorin in lung carcinogenesis has not been investigated. METHODS: Vasorin expression was examined in human lung cancer tissues with immunohistochemistry and database analysis. Genetic and pharmacological approaches were used to manipulate protein expression and autophagy activity in human bronchial epithelial cells (HBECs). ROS generation was measured with fluorescent indicator, apoptosis with release of lactate dehydrogenase, and cell transformation was assessed with colony formation in soft agar. RESULTS: Vasorin expression was increased in human lung cancer tissues and cell lines, which was inversely associated with lung cancer patient survival. Cigarette smoke extract (CSE) and benzo[a]pyrene diol epoxide (BPDE)-induced vasorin expression in HBECs. Vasorin knockdown in HBECs significantly suppressed CSE-induced transformation in association with enhanced ROS accumulation and autophagy. Scavenging ROS attenuated autophagy and cytotoxicity in vasorin knockdown cells, suggesting that vasorin potentiates transformation by impeding ROS-mediated CSE cytotoxicity and improving survival of the premalignant cells. Suppression of autophagy effectively inhibited CSE-induced apoptosis, suggesting that autophagy was pro-apoptotic in CSE-treated cells. Importantly, blocking autophagy strongly potentiated CSE-induced transformation. CONCLUSION: These results suggest that vasorin is a potential lung cancer-promoting factor that facilitates cigarette smoke-induced bronchial epithelial cell transformation by suppressing autophagy-mediated apoptosis, which could be exploited for lung cancer prevention.

16.
iScience ; 17: 74-86, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31255985

RESUMEN

DNA-damaging compounds, commonly used as chemotherapeutic drugs, are known to trigger cells to undergo programmed cell death such as apoptosis and necroptosis. However, the molecular mechanism of DNA damage-induced cell death is not fully understood. Here, we report that RARγ has a critical role in DNA damage-induced programmed cell death, specifically in necroptosis. The loss of RARγ abolishes the necroptosis induced by DNA damage. In addition, cells that lack RARγ are less susceptible to extrinsic apoptotic pathway activated by DNA-damaging agents whereas the intrinsic apoptotic pathway is not affected. We demonstrate that RARγ is essential for the formation of RIPK1/RIPK3 death complex, known as Ripoptosome, in response to DNA damage. Furthermore, we show that RARγ plays a role in skin cancer development by using RARγ1 knockout mice and human squamous cell carcinoma biopsies. Hence, our study reveals that RARγ is a critical component of DNA damage-induced cell death.

17.
Sci Rep ; 9(1): 1759, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741975

RESUMEN

The inflammatory response, modulated both by tissue resident macrophages and recruited monocytes from peripheral blood, plays a critical role in human diseases such as cancer and neurodegenerative disorders. Here, we sought a model to interrogate human immune behavior in vivo. We determined that primary human monocytes and macrophages survive in zebrafish for up to two weeks. Flow cytometry revealed that human monocytes cultured at the physiological temperature of the zebrafish survive and differentiate comparable to cohorts cultured at human physiological temperature. Moreover, key genes that encode for proteins that play a role in tissue remodeling were also expressed. Human cells migrated within multiple tissues at speeds comparable to zebrafish macrophages. Analysis of gene expression of in vivo educated human macrophages confirmed expression of activated macrophage phenotypes. Here, human cells adopted phenotypes relevant to cancer progression, suggesting that we can define the real time immune modulation of human tumor cells during the establishment of a metastatic lesion in zebrafish.


Asunto(s)
Genotipo , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Biomarcadores , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Humanos , Fenotipo , Pez Cebra
18.
Mol Cell Oncol ; 5(1): e1392402, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29404390

RESUMEN

TNFR1-mediated cell signaling involves complex molecular pathways leading to inflammation and death. Cytosolic RARγ plays a pivotal role in converting TNF-induced inflammatory responses to RIP1 initiated cell death and this finely regulated function of RARγ serves as a checkpoint to engage death pathways in response to TNF.

20.
Mol Cell Biol ; 24(13): 5914-22, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15199146

RESUMEN

Oxidative stress and reactive oxygen species (ROS) can elicit and modulate various physiological and pathological processes, including cell death. However, the mechanisms controlling ROS-induced cell death are largely unknown. Data from this study suggest that receptor-interacting protein (RIP) and tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2), two key effector molecules of TNF signaling, are essential for ROS-induced cell death. We found that RIP(-/-) or TRAF2(-/-) mouse embryonic fibroblasts (MEF) are resistant to ROS-induced cell death when compared to wild-type cells, and reconstitution of RIP and TRAF2 gene expression in their respective deficient MEF cells restored their sensitivity to H(2)O(2)-induced cell death. We also found that RIP and TRAF2 form a complex upon H(2)O(2) exposure, but without the participation of TNFR1. The colocalization of RIP with a membrane lipid raft marker revealed a possible role of lipid rafts in the transduction of cell death signal initiated by H(2)O(2). Finally, our results demonstrate that activation of c-Jun NH(2)-terminal kinase 1 is a critical event downstream of RIP and TRAF2 in mediating ROS-induced cell death. Therefore, our study uncovers a novel signaling pathway regulating oxidative stress-induced cell death.


Asunto(s)
Estrés Oxidativo , Proteínas/fisiología , Animales , Muerte Celular , Línea Celular , Humanos , Peróxido de Hidrógeno/farmacología , Células Jurkat , Ratones , Proteína Quinasa 8 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Unión Proteica/efectos de los fármacos , Proteínas/genética , Proteínas/metabolismo , Especies Reactivas de Oxígeno/farmacología , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Transducción de Señal , Factor 2 Asociado a Receptor de TNF , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA