Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339093

RESUMEN

Lactoferrin (LF) stands as one of the extensively investigated iron-binding glycoproteins within milk, exhibiting diverse biological functionalities. The global demand for LF has experienced consistent growth. Biotechnological strategies aimed at enhancing LF productivity through microbial expression systems offer substantial cost-effective advantages and exhibit fewer constraints compared to traditional animal bioreactor technologies. This study devised a novel recombinant plasmid, wherein the AOX1 promoter was replaced with a glucose-inducible G1 promoter (PG1) to govern the expression of recombinant porcine LF (rpLF) in Pichia pastoris GS115. High-copy-number PG1-rpLF yeast clones were meticulously selected, and subsequent induction with 0.05 g/L glucose demonstrated robust secretion of rpLF. Scaling up production transpired in a 5 L fermenter, yielding an estimated rpLF productivity of approximately 2.8 g/L by the conclusion of glycerol-fed fermentation. A three-step purification process involving tangential-flow ultrafiltration yielded approximately 6.55 g of rpLF crude (approximately 85% purity). Notably, exceptional purity of rpLF was achieved through sequential heparin and size-exclusion column purification. Comparatively, the present glucose-inducible system outperformed our previous methanol-induced system, which yielded a level of 87 mg/L of extracellular rpLF secretion. Furthermore, yeast-produced rpLF demonstrated affinity for ferric ions (Fe3+) and exhibited growth inhibition against various pathogenic microbes (E. coli, S. aureus, and C. albicans) and human cancer cells (A549, MDA-MB-231, and Hep3B), similar to commercial bovine LF (bLF). Intriguingly, the hydrolysate of rpLF (rpLFH) manifested heightened antimicrobial and anticancer effects compared to its intact form. In conclusion, this study presents an efficient glucose-inducible yeast expression system for large-scale production and purification of active rpLF protein with the potential for veterinary or medical applications.


Asunto(s)
Antiinfecciosos , Lactoferrina , Proteínas Recombinantes , Animales , Bovinos , Humanos , Antiinfecciosos/farmacología , Escherichia coli/metabolismo , Fermentación , Glucosa/metabolismo , Lactoferrina/biosíntesis , Lactoferrina/genética , Lactoferrina/farmacología , Pichia/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharomycetales , Staphylococcus aureus/efectos de los fármacos , Porcinos
2.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298555

RESUMEN

E7050 is an inhibitor of VEGFR2 with anti-tumor activity; however, its therapeutic mechanism remains incompletely understood. In the present study, we aim to evaluate the anti-angiogenic activity of E7050 in vitro and in vivo and define the underlying molecular mechanism. It was observed that treatment with E7050 markedly inhibited proliferation, migration, and capillary-like tube formation in cultured human umbilical vein endothelial cells (HUVECs). E7050 exposure in the chick embryo chorioallantoic membrane (CAM) also reduced the amount of neovessel formation in chick embryos. To understand the molecular basis, E7050 was found to suppress the phosphorylation of VEGFR2 and its downstream signaling pathway components, including PLCγ1, FAK, Src, Akt, JNK, and p38 MAPK in VEGF-stimulated HUVECs. Moreover, E7050 suppressed the phosphorylation of VEGFR2, FAK, Src, Akt, JNK, and p38 MAPK in HUVECs exposed to MES-SA/Dx5 cells-derived conditioned medium (CM). The multidrug-resistant human uterine sarcoma xenograft study revealed that E7050 significantly attenuated the growth of MES-SA/Dx5 tumor xenografts, which was associated with inhibition of tumor angiogenesis. E7050 treatment also decreased the expression of CD31 and p-VEGFR2 in MES-SA/Dx5 tumor tissue sections in comparison with the vehicle control. Collectively, E7050 may serve as a potential agent for the treatment of cancer and angiogenesis-related disorders.


Asunto(s)
Sarcoma , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Embrión de Pollo , Humanos , Inhibidores de la Angiogénesis/uso terapéutico , Movimiento Celular , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sarcoma/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499211

RESUMEN

E7050 is a potent inhibitor of c-Met receptor tyrosine kinase and has potential for cancer therapy. However, the underlying molecular mechanism involved in the anti-cancer property of E7050 has not been fully elucidated. The main objective of this study was to investigate the anti-tumor activity of E7050 in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells in vitro and in vivo, and to define its mechanisms. Our results revealed that E7050 reduced cell viability of MES-SA/Dx5 cells, which was associated with the induction of apoptosis and S phase cell cycle arrest. Additionally, E7050 treatment significantly upregulated the expression of Bax, cleaved PARP, cleaved caspase-3, p21, p53 and cyclin D1, while it downregulated the expression of survivin and cyclin A. On the other hand, the mechanistic study demonstrated that E7050 inhibited the phosphorylation of c-Met, Src, Akt and p38 in HGF-stimulated MES-SA/Dx5 cells. Further in vivo experiments showed that treatment of athymic nude mice carrying MES-SA/Dx5 xenograft tumors with E7050 remarkably suppressed tumor growth. E7050 treatment also decreased the expression of Ki-67 and p-Met, and increased the expression of cleaved caspase-3 in MES-SA/Dx5 tumor sections. Therefore, E7050 is a promising drug that can be developed for the treatment of multidrug-resistant uterine sarcoma.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Neoplasias Uterinas , Ratones , Femenino , Animales , Humanos , Proteínas Proto-Oncogénicas c-met/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Ratones Desnudos , Apoptosis , Sarcoma/metabolismo , Neoplasias Uterinas/patología , Transducción de Señal
4.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466434

RESUMEN

The maternal-to-zygotic transition (MZT), which controls maternal signaling to synthesize zygotic gene products, promotes the preimplantation development of mouse zygotes to the two-cell stage. Our previous study reported that mouse granzyme g (Gzmg), a serine-type protease, is required for the MZT. In this study, we further identified the maternal factors that regulate the Gzmg promoter activity in the zygote to the two-cell stage of mouse embryos. A full-length Gzmg promoter from mouse genomic DNA, FL-pGzmg (-1696~+28 nt), was cloned, and four deletion constructs of this Gzmg promoter, Δ1-pGzmg (-1369~+28 nt), Δ2-pGzmg (-939~+28 nt), Δ3-pGzmg (-711~+28 nt) and Δ4-pGzmg (-417~+28 nt), were subsequently generated. Different-sized Gzmg promoters were used to perform promoter assays of mouse zygotes and two-cell stage embryos. The results showed that Δ4-pGzmg promoted the highest expression level of the enhanced green fluorescent protein (EGFP) reporter in the zygotes and two-cell embryos. The data suggested that time-specific transcription factors upregulated Gzmg by binding cis-elements in the -417~+28-nt Gzmg promoter region. According to the results of the promoter assay, the transcription factor binding sites were predicted and analyzed with the JASPAR database, and two transcription factors, signal transducer and activator of transcription 3 (STAT3) and GA-binding protein alpha (GABPα), were identified. Furthermore, STAT3 and GABPα are expressed and located in zygote pronuclei and two-cell nuclei were confirmed by immunofluorescence staining; however, only STAT3 was recruited to the mouse zygote pronuclei and two-cell nuclei injected with the Δ4-pGzmg reporter construct. These data indicated that STAT3 is a maternal transcription factor and may upregulate Gzmg to promote the MZT. Furthermore, treatment with a STAT3 inhibitor, S3I-201, caused mouse embryonic arrest at the zygote and two-cell stages. These results suggest that STAT3, a maternal protein, is a critical transcription factor and regulates Gzmg transcription activity in preimplantation mouse embryos. It plays an important role in the maternal-to-zygotic transition during early embryonic development.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Granzimas/genética , Factor de Transcripción STAT3/genética , Animales , Blastocisto/fisiología , Núcleo Celular/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Endogámicos ICR , Embarazo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Cigoto/fisiología
5.
Cytokine ; 113: 380-392, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389230

RESUMEN

INTRODUCTION: Resveratrol has been reported to alleviate inflammatory responses and oxidative stress in mesangial cells and in several types of renal injury in animal models. Previously, the active resveratrol derivatives from the roots of Vitis thunbergii Sieb. & Zucc. (Vitaceae) were shown to have significant anti-platelet and anti-oxidative activities. However, the anti-inflammatory mechanisms of these resveratrol derivatives in rat mesangial cells (RMCs) have not been clarified fully. METHODS: The protective mechanisms of resveratrol derivatives involved in tumor necrosis factor-α (TNF-α)-induced inflammatory responses were assessed by Western blot analysis, real-time PCR, and RT-PCR. The involvement of various signaling molecules in these responses was investigated using selective pharmacological inhibitors. RESULTS: Nontoxic concentrations of the resveratrol derivatives significantly attenuated cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (COX-2) expression in RMCs challenged by TNF-α. These resveratrol derivatives inhibited TNF-α-activated ERK1/2 and JNK1/2 without affecting p38 phosphorylation. Next, we demonstrated that TNF-α induced NF-κB activation, translocation, and promoter activity, which was inhibited by pretreatment with resveratrol derivatives in RMCs. CONCLUSION: The protective mechanisms of resveratrol derivatives against TNF-α-stimulated inflammatory responses via cPLA2/COX-2/PGE2 inhibition was caused by the attenuation of the JNK1/2, ERK1/2, and NF-κB signaling pathways in RMCs.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Mesangiales/metabolismo , Resveratrol/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Línea Celular , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Células Mesangiales/patología , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L654-L669, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351433

RESUMEN

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are high-mortality and life-threatening diseases that are associated with neutrophil activation and accumulation within lung tissue. Emerging evidence indicates that neutrophil-platelet aggregates (NPAs) at sites of injury increase acute inflammation and contribute to the development of ALI. Although numerous studies have increased our understanding of the pathophysiology of ALI, there is still a lack of innovative and useful treatments that reduce mortality, emphasizing that there is an urgent need for novel treatment strategies. In this study, a new series of small compounds of ß-nitrostyrene derivatives (BNSDs) were synthesized, and their anti-inflammatory bioactivities on neutrophils and platelets were evaluated. The new small compound C7 modulates neutrophil function by inhibiting superoxide generation and elastase release. Compound C7 elicits protective effects on LPS-induced paw edema and acute lung injury via the inhibition of neutrophil accumulation, proinflammatory mediator release, platelet aggregation, myeloperoxidase activity, and neutrophil extracellular trap (NET) release. NET formation was identified as the bridge for the critical interactions between neutrophils and platelets by confocal microscopy and flow cytometry. This research provides new insights for elucidating the complicated regulation of neutrophils and platelets in ALI and sheds further light on future drug development strategies for ALI/ARDS and acute inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Plaquetas/efectos de los fármacos , Trampas Extracelulares/metabolismo , Lipopolisacáridos/toxicidad , Neutrófilos/efectos de los fármacos , Edema Pulmonar/tratamiento farmacológico , Estirenos/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Animales , Plaquetas/inmunología , Plaquetas/metabolismo , Plaquetas/patología , Adhesión Celular , Células Cultivadas , Trampas Extracelulares/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Edema Pulmonar/inducido químicamente , Edema Pulmonar/inmunología , Edema Pulmonar/patología
7.
J Biomed Sci ; 25(1): 57, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30025541

RESUMEN

BACKGROUND: Induced pluripotency in cancer cells by ectopic expression of pluripotency-regulating factors may be used for disease modeling of cancers. MicroRNAs (miRNAs) are negative regulators of gene expression that play important role in reprogramming somatic cells. However, studies on the miRNA expression profile and the expression patterns of the mesenchymal-epithelial transition (MET)/epithelial-mesenchymal transition (EMT) genes in induced pluripotent cancer (iPC) cells are lacking. METHODS: iPC clones were generated from two colorectal cancer (CRC) cell lines by retroviral transduction of the Yamanaka factors. The iPC clones obtained were characterized by morphology, expression of pluripotency markers and the ability to undergo in vitro tri-lineage differentiation. Genome-wide miRNA profiles of the iPC cells were obtained by microarray analysis and bioinformatics interrogation. Gene expression was done by real-time RT-PCR and immuno-staining; MET/EMT protein levels were determined by western blot analysis. RESULTS: The CRC-iPC cells showed embryonic stem cell-like features and tri-lineage differentiation abilities. The spontaneously-differentiated post-iPC cells obtained were highly similar to the parental CRC cells. However, down-regulated pluripotency gene expression and failure to form teratoma indicated that the CRC-iPC cells had only attained partial pluripotency. The CRC-iPC cells shared similarities in the genome-wide miRNA expression profiles of both cancer and pluripotent embryonic stem cells. One hundred and two differentially-expressed miRNAs were identified in the CRC-iPC cells, which were predicted by bioinformatics analysis be closely involved in regulating cellular pluripotency and the expression of the MET/EMT genes, possibly via the phosphatidylinositol-3 kinases-protein kinase B (PI3K-Akt) and transforming growth factor beta (TGF-ß) signaling pathways. Irregular and inconsistent expression patterns of the EMT vimentin and Snai1 and MET E-cadherin and occludin proteins were observed in the four CRC-iPC clones analyzed, which suggested an epithelial/mesenchymal hybrid phenotype in the partially reprogrammed CRC cells. MET/EMT gene expression was also generally reversed on re-differentiation, also suggesting epigenetic regulation. CONCLUSIONS: Our data support the elite model for cancer cell-reprogramming in which only a selected subset of cancer may be fully reprogrammed; partial cancer cell reprogramming may also elicit an epithelial-mesenchymal mixed phenotype, and highlight opportunities and challenges in cancer cell-reprogramming.


Asunto(s)
Reprogramación Celular/genética , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/genética , Proteínas de Neoplasias/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Linaje de la Célula/genética , Movimiento Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , MicroARNs/genética , Células Madre Neoplásicas/patología , Fosfatidilinositol 3-Quinasas/genética
8.
J Dairy Sci ; 97(6): 3281-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24731632

RESUMEN

Liver diseases, which can be caused by alcohol abuse, chemical intoxication, viral hepatitis infection, and autoimmune disorders, are a significant health issue because they can develop into liver fibrosis and cirrhosis. Lactoferrin (LF), a siderophilic protein with 2 iron-binding sites, has been demonstrated to possess a multitude of biological functions, including antiinflammation, anticancer, and antimicrobial effects, as well as immunomodulatory-enhancing functions. In the current study, we induced hepatotoxicity in rats with dimethylnitrosamine (DMN) to establish a situation that would enable us to evaluate the hepatoprotective effects of LF against hepatic injury. Our results showed that DMN-induced hepatic pathological damage significantly decreased the body weight and liver index, increased the mRNA and protein levels of collagen α-1(I) (ColIα-1) and α-smooth muscle actin, and increased the hydroxyproline content. However, treatment with LF significantly increased body weight and liver index, decreased the mRNA and protein levels of ColIα-1 and α-smooth muscle actin, and suppressed the hydroxyproline content when compared with the DMN-treated group. Liver histopathology also showed that low-dose LF (100mg/kg of body weight) or high-dose LF (300 mg/kg of body weight) could significantly reduce the incidences of liver lesions induced by DMN. These results suggest that the LF exhibits potent hepatoprotection against DMN-induced liver damage in rats and that the hepatoprotective effects of LF may be due to the inhibition of collagen production and to stellate cell activation.


Asunto(s)
Lactoferrina/farmacología , Cirrosis Hepática/prevención & control , Animales , Peso Corporal/efectos de los fármacos , Dimetilnitrosamina/toxicidad , Modelos Animales de Enfermedad , Hidroxiprolina/análisis , Lactoferrina/uso terapéutico , Hígado/química , Hígado/diagnóstico por imagen , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Masculino , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Ultrasonografía
9.
Biomed J ; : 100720, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679198

RESUMEN

BACKGROUND: Pulmonary fibrosis is a progressive diffuse parenchymal lung disorder with a high mortality rate. Studies have indicated that injured lung tissues release various pro-inflammatory factors, and produce a large amount of nitric oxide. There is also accumulation of collagen and oxidative stress-induced injury, collectively leading to pulmonary fibrosis. Antrodia cinnamomea is an endemic fungal growth in Taiwan, and its fermented extracts exert anti-inflammatory effects to alleviate liver damages. Hence, we hypothesized and tested the feasibility of using A. cinnamomea extracts for treatment of pulmonary fibrosis. METHODS: The TGF-ß1-induced human lung fibroblast cells (MRC-5) in vitro cell assay were used to evaluate the effects of A. cinnamomea extracts on the collagen production in MRC-5. Eight-week-old ICR mice were intratracheally administered bleomycin and then fed with an A. cinnamomea extract on day 3 post-administration of bleomycin. At day 21 post-bleomycin administration, the pulmonary functional test, the expression level of inflammation- and fibrosis-related genes in the lung tissue, and the histopathological change were examined. RESULTS: The A. cinnamomea extract significantly attenuated the expression level of collagen in the TGF-ß1-induced MRC-5 cells. In the A. cinnamome-treated bleomycin-induced lung fibrotic mice, the bodyweight increased, pulmonary functions improved, the lung tissues expression level of inflammatory factor and the fibrotic indicator were decreased, and the histopathological results showed the reduction of thickening of the inter-alveolar septa. CONCLUSIONS: The Antrodia cinnamomea extract significant protects mice against bleomycin-induced lung injuries through improvement of body weight gain and lung functions, and attenuation of expression of inflammatory and fibrotic indicators.

10.
Cell Biosci ; 14(1): 18, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308335

RESUMEN

BACKGROUND: The development of alcohol-associated liver disease (ALD) is influenced by the amount and duration of alcohol consumption. The resulting liver damage can range from reversible stages, such as steatosis, steatohepatitis and alcoholic fibrosis, to the advanced and irreversible stage of cirrhosis. Aldo-keto reductase family 1 member A1 (AKR1A1) is a member of the aldo-keto reductase family that catalyzes the reduction of aldehyde groups to their corresponding alcohols in an NADPH-dependent manner. AKR1A1 was found to be downregulated in patients diagnosed with ALD. This study aims to interpret the protective effects of AKR1A1 on the development of ALD. METHODS: A 5% alcohol-fed (AF) Akr1a1 knockout (Akr1a1-/-) mouse model and an AML12 hepatocyte model were used. The effects of AKR1A1 on liver function, inflammation, oxidative stress, lipid accumulation, and fibrosis were assessed by ELISA, western blotting, RT‒PCR, and a variety of histological staining methods in AF-induced wild-type (WT) and Akr1a1-/- mice compared to control liquid diet-fed (PF) WT and Akr1a1-/- mice. RESULTS: The results demonstrated that AF-WT mice expressed higher levels of AKR1A1 than WT mice fed a control diet, and they did not show any noticeable liver steatosis. However, AF-Akr1a1-/- mice displayed a lower survival rate and more severe liver injury than AF-WT mice, as demonstrated by increased proinflammatory cytokines, oxidative stress, lipid accumulation, fibrosis, and reduced antioxidant enzymes in their livers. Additionally, elevated levels of 4-HNE and p53 phosphorylation were observed in AF-Akr1a1-/- mice, suggesting that the loss of AKR1A1 led to increased 4-HNE accumulation and subsequent activation of p53, which contributed to the progression of ALD. Furthermore, in AML12 hepatocytes, Akr1a1 knockdown aggravated oxidative stress and steatosis induced by palmitic acid/oleic acid (P/O) inflammation induced by lipopolysaccharide (LPS), and fibrosis induced by TGF-ß1. CONCLUSIONS: This loss-of-function study suggests that AKR1A1 plays a liver-protective role during chronic alcohol consumption by reducing the accumulation of 4-HNE and inhibiting 4-HNE-mediated p53 activation.

11.
Biochem Biophys Res Commun ; 430(2): 774-9, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23206709

RESUMEN

Chaperonic proteins, including inducible HSP70 (HSP70i) and constitutive HSP70 (HSC70), have been implicated as essential players in the cellular adaptive protection. Ensuing studies demonstrated that overexpression of either protein individually protects against thermal and oxidative challenges. The present study aimed to determine whether a concurrent overexpression of both HSC70 and HSP70i confers a better metabolic protection than the expression of each protein alone. Using a rat heart-derived H9c2 cardiac myoblast cell line, we found that HSP70i was rapidly induced within 2-8h following a mild thermal preconditioning (43°C for 20 min) in both parental cells and an established H9/70c clonal sub-line overexpressing HSC70. The level of HSP70i protein in heat pretreated H9/70c clonal cells reached only 50% of that in heat pretreated H9c2 parental cells. Nevertheless, protection against lethal hyperthermia, menadione (an oxidant) and hydrogen peroxide (H(2)O(2)) exposure in the pretreated H9/70c clonal cells was significantly higher than the sum of protection afforded by the early induction of HSP70i in the pretreated parental cells and protection afforded by the pre-existing HSC70 in the H9/70c cells without preconditioning. Using dosimetric analysis, we also found that menadione resistance in the pretreated parental cells increased linearly with cellular HSP70i level (10-300 ng/mg total protein). However, the resistance in the pretreated H9/70c cells showed a biphasic relationship with cellular HSP70i level; when HSP70i concentration reached >250 ng/mg protein, survivability after menadione exposure was markedly enhanced. Similar results were observed in H9c2 cells genetically manipulated to overexpress both HSC70 and HSP70i. The survival benefit against lethal hyperthermia, oxidant treatment, and hypoxia/reoxygenation conferred by a concerted HSC70 and HSP70i overexpression was greater than the sum of benefits contributed by individual protein overexpression. Together, these findings suggest that HSC70 and HSP70i may complement each other in a synergistic manner to preserve cellular integrity during metabolic challenges.


Asunto(s)
Fiebre/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Mioblastos Cardíacos/metabolismo , Estrés Oxidativo , Animales , Línea Celular , Supervivencia Celular , Proteínas HSP70 de Choque Térmico/genética , Calor , Peróxido de Hidrógeno/farmacología , Mioblastos Cardíacos/efectos de los fármacos , Ratas
12.
Cells ; 12(16)2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37626921

RESUMEN

MicroRNA (miRNA) 107 expression is downregulated but Wnt3a protein and ß-catenin are upregulated in degenerated intervertebral disc (IVD). We investigated mir-107/Wnt3a-ß-catenin signaling in vitro and in vivo following hyperbaric oxygen (HBO) intervention. Our results showed 96 miRNAs were upregulated and 66 downregulated in degenerated nucleus pulposus cells (NPCs) following HBO treatment. The 3' untranslated region (UTR) of the Wnt3a mRNA contained the "seed-matched-sequence" for miR-107. MiR-107 was upregulated and a marked suppression of Wnt3a was observed simultaneously in degenerated NPCs following HBO intervention. Knockdown of miR-107 upregulated Wnt3a expression in hyperoxic cells. HBO downregulated the protein expression of Wnt3a, phosphorylated LRP6, and cyclin D1. There was decreased TOP flash activity following HBO intervention, whereas the FOP flash activity was not affected. HBO decreased the nuclear translocation of ß-catenin and decreased the secretion of MMP-3 and -9 in degenerated NPCs. Moreover, rabbit serum KS levels and the stained area for Wnt3a and ß-catenin in repaired cartilage tended to be lower in the HBO group. We observed that HBO inhibits Wnt3a/ß-catenin signaling-related pathways by upregulating miR-107 expression in degenerated NPCs. HBO may play a protective role against IVD degeneration and could be used as a future therapeutic treatment.


Asunto(s)
Oxigenoterapia Hiperbárica , MicroARNs , Núcleo Pulposo , Animales , Conejos , beta Catenina , Oxígeno , Modelos Animales , Regiones no Traducidas 3' , MicroARNs/genética
13.
J Clin Med ; 11(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35887736

RESUMEN

Platelet concentrates (PCs) are widely used in regenerative medicine; as it is produced from freeze-thawing PC, platelet lysate (PL) has a longer shelf life. The thrombotic risk of PL therapy needs to be explored since PL and PC contain cytokines that contribute to platelet aggregation and thrombus formation. Whole blood samples of 20 healthy subjects were collected; PL was produced from PCs with expired shelf life through freeze-thawing. The direct mixing of PL with platelet-rich plasma (PRP) or whole blood was performed. In addition, rotational thromboelastometry (ROTEM) was used to investigate whether PL enhanced coagulation in vitro; the effects of fibrinogen depletion and anticoagulants were evaluated to prevent hypercoagulation. The results showed that PL induced platelet aggregation in both PRP and whole blood. In ROTEM assays, PL was shown to cause a significantly lower clotting onset time (COT) and clot formation time (CFT), and a significantly greater α angle and maximum clot firmness (MCF). Compared with the controls, which were 1:1 mixtures of normal saline and whole blood, fibrinogen depletion of PL showed no significant difference in CFT, α angle and MCF. Moreover, heparin- and rivaroxaban-added PL groups demonstrated no clot formation in ROTEM assays. Platelet lysate-induced hypercoagulability was demonstrated in vitro in the present study, which could be prevented by fibrinogen depletion or the addition of an anticoagulant.

14.
Antioxidants (Basel) ; 11(6)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35740095

RESUMEN

End-stage renal disease (ESRD) patients experience oxidative stress due to excess exogenous or endogenous oxidants and insufficient antioxidants. Hence, oxidative stress and inflammation cause endothelial damage, contributing to vascular dysfunction and atherosclerosis. Therefore, ESRD patients suffer more cardiovascular and hospitalization events than healthy people. This study aims to test the correlations between ROS, SOD3, IL-2, IL-6, and IL-18 and the first kidney disease-related hospitalization or death events in ESRD patients undergoing regular hemodialysis. A total of 212 participants was enrolled, including 45 normal healthy adults and 167 ESRD patients on regular dialysis. Blood samples from all participants were collected for ROS, SOD3, IL-2, IL-6, and IL-18 measurement at the beginning of the study, and every kidney disease-related admission or death was recorded for the next year. Multivariate analysis was conducted by fitting a linear regression model, logistic regression model, and Cox proportional hazards model to estimate the adjusted effects of risk factors, prognostic factors, or predictors on continuous, binary, and survival outcome data. The results showed that plasma SOD3 and serum IL-18 were two strong predictors of the first kidney disease-related hospitalization or death. In the Cox proportional hazards models (run in R), higher IL-18 concentration (>69.054 pg/mL) was associated with a hazard ratio of 3.376 for the first kidney disease-related hospitalization or death (95% CI: 1.2644 to 9.012), while log(SOD3) < 4.723 and dialysis clearance (Kt/V; 1.11 < value < 1.869) had a hazard ratio = 0.2730 (95% CI: 0.1133 to 0.6576) for reducing future kidney disease-related hospitalization or death. Other markers, including body mass index (BMI), transferrin saturation, total iron binding capacity, and sodium and alkaline phosphate, were also found to be significant in our study. These results reveal the new predictors SOD3 and IL-18 for the medical care of end-stage renal disease patients.

15.
Front Pharmacol ; 13: 997100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267283

RESUMEN

2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-Glucoside (THSG) is the main active ingredient extracted from Polygonum multiflorum Thunb. (PMT), which has been reported to possess extensive pharmacological properties. Nevertheless, the exact role of THSG in pulmonary fibrosis has not been demonstrated yet. The main purpose of this study was to investigate the protective effect of THSG against bleomycin (BLM)-induced lung fibrosis in a murine model, and explore the underlying mechanisms of THSG in transforming growth factor-beta 1 (TGF-ß1)-induced fibrogenesis using MRC-5 human lung fibroblast cells. We found that THSG significantly attenuated lung injury by reducing fibrosis and extracellular matrix deposition. THSG treatment significantly downregulated the expression levels of TGF-ß1, fibronectin, α-SMA, CTGF, and TGFBR2, however, upregulated the expression levels of antioxidants (SOD-1 and catalase) and LC3B in the lungs of BLM-treated mice. THSG treatment decreased the expression levels of fibronectin, α-SMA, and CTGF in TGF-ß1-stimulated MRC-5 cells. Conversely, THSG increased the expression levels of SOD-1 and catalase. Furthermore, treatment of THSG profoundly reduced the TGF-ß1-induced generation of reactive oxygen species (ROS). In addition, THSG restored TGF-ß1-induced impaired autophagy, accompany by increasing the protein levels of LC3B-II and Beclin 1. Mechanism study indicated that THSG significantly reduced TGF-ß1-induced increase of TGFBR2 expression and phosphorylation of Smad2/3, Akt, mTOR, and ERK1/2 in MRC-5 cells. These findings suggest that THSG may be considered as an anti-fibrotic drug for the treatment of pulmonary fibrosis.

16.
Stem Cell Res Ther ; 13(1): 235, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659367

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a malignant cancer and chemotherapy ineffectively treats PDAC, leading to the requirement for alternative tumor-targeted treatment. Human amniotic fluid mesenchymal stem cells (hAFMSCs) have been revealed to suppress tumor growth in various cancers and they are a strong candidate for treating PDAC. METHODS: To evaluate the effects of hAFMSCs on human pancreatic carcinoma cells (PANC1, AsPC1 and BxPC3 cell lines) and the possible mechanism involved, an in vitro cell coculture system was used. A PANC1 orthotopic xenograft mouse model was established and hAFMSCs were injected intravenously at 4 weeks post-xenograft. RESULTS: An in vitro coculture assay showed that hAFMSCs inhibited PANC1 cell proliferation by inducing S phase cell cycle arrest and increased cell apoptosis in a time-dependent manner. In PANC1 cells, hAFMSCs caused the downregulation of Cyclin A and Cyclin B1 as well as the upregulation of p21 (CDKN1A) at 24 h post coculture. The upregulation of pro-apoptotic factors Caspase-3/-8 and Bax at 24 h post coculture reduced the migration and invasion ability of PANC1 cells through inhibiting the epithelial-mesenchymal transition (EMT) process. In a PANC1 orthotopic xenograft mouse model, a single injection of hAFMSCs showed significant tumor growth inhibition with evidence of the modulation of cell cycle and pro-apoptotic regulatory genes and various genes involved in matrix metallopeptidase 7 (MMP7) signaling-triggered EMT process. Histopathological staining showed lower Ki67 levels in tumors from hAFMSCs-treated mice. CONCLUSIONS: Our data demonstrated that hAFMSCs strongly inhibit PDAC cell proliferation, tumor growth and invasion, possibly by altering cell cycle arrest and MMP7 signaling-triggered EMT.


Asunto(s)
Carcinoma Ductal Pancreático , Células Madre Mesenquimatosas , Neoplasias Pancreáticas , Líquido Amniótico , Animales , Apoptosis , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Metaloproteinasa 7 de la Matriz/genética , Metaloproteinasa 7 de la Matriz/metabolismo , Metaloproteinasa 7 de la Matriz/farmacología , Células Madre Mesenquimatosas/metabolismo , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
17.
Cell Mol Life Sci ; 67(4): 641-53, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19936619

RESUMEN

Abnormalities of platelet functions have been linked to reelin-impaired neuronal disorders. However, little attention has been given to understanding the interplay between reelin and platelet. In this study, reelin was found to present in the human platelets and megakaryocyte-like leukemic cells. Reelin-binding assays revealed that extracellular reelin can interact with platelets through the receptor belonging to the low density lipoprotein receptor gene family. The reelin-to-platelet interactions enhance platelet spreading on fibrinogen concomitant with the augmentation of lamellipodia formation and F-actin bundling. In contrast, reelin has no effect on integrin alphaIIbbeta3 activation and agonist-induced platelet aggregation. Molecular analysis revealed that the up-regulation of Rac1 activity and the inhibition of protein kinase C delta-Thr505 phosphorylation are important for reelin-mediated enhancement of platelet spreading on fibrinogen. These findings demonstrate for the first time that reelin is present in platelets and the reelin-to-platelet interactions play a novel role in platelet signaling and functions.


Asunto(s)
Plaquetas/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Movimiento Celular , Proteínas de la Matriz Extracelular/fisiología , Proteínas del Tejido Nervioso/fisiología , Agregación Plaquetaria , Serina Endopeptidasas/fisiología , Plaquetas/metabolismo , Moléculas de Adhesión Celular Neuronal/sangre , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/sangre , Fibrinógeno/metabolismo , Humanos , Proteínas del Tejido Nervioso/sangre , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/agonistas , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Proteína Reelina , Serina Endopeptidasas/sangre
18.
Artículo en Inglés | MEDLINE | ID: mdl-19307173

RESUMEN

The purpose of the present study was to investigate the effects of Gingyo-san (GGS), a traditional Chinese medical formula, on peripheral lymphocyte proliferation and serum antibody titers in chickens vaccinated against the infectious bursal disease (IBD) virus. Treatment groups were fed one of three doses of GGS in their diet (0.5%, 1.0% and 2.0%, w/w), and the IBD vaccine was administered at 1 and 3 weeks of age. At Weeks 8, 12 and 16, changes in serum IBD antibody titers were measured via the micro-method and T cell proliferation. In gene expression experiments, GGS-treated peripheral T lymphocytes were stimulated with concanavalin A (ConA) for 24 h. The mRNA expression of interleukin-2 (IL-2), interferon-γ (IFN-γ), interleukin-4 (IL-4) and interleukin-12 (IL-12) was determined using a semi-quantitative RT-PCR assay. The results showed that a low dose of GGS could significantly raise the antibody titers. Medium and high doses of GGS enhanced IL-2 and IFN-γ production. GGS altered the expression of IL-4 and IL-12 in T lymphocytes. CD4(+) T lymphocyte development was also skewed towards the Th1 phenotype. GGS enhanced cell-mediated immunity and augmented the effects of IBD vaccination in strengthening subsequent anti-viral responses.

19.
ACS Appl Mater Interfaces ; 13(29): 33885-33893, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34259499

RESUMEN

Hypoxia is a nonphysiological oxygen tension which is common in most malignant tumors. Hypoxia stimulates complicated cell signaling networks in cancer cells, e.g., the HIF, PI3K, MAPK, and NFκB pathways. Then, cells release a number of cytokines such as VEGFA to promote the growth of peripheral blood vessels and lead to metastasis. In the current work, understanding of the internal hypoxic environment in solid tumor tissue was attempted by developing a folding paper system. A paper-based solid tumor was constructed by folding a filter paper cultured with cancer cells. The cellular response in each layer could be analyzed by disassembling the folded paper after the culture course. The result showed that an internal hypoxic environment was successfully reproduced in the paper-based solid tumor. The cells in the inner layer expressed high levels of HIF1-α and VEGFA. Hence, proliferation and migration of endothelial cells were shown to be induced by the cells located in the internal hypoxic environment. Moreover, the paper-based solid tumor was transplanted into nude mice for the study of hypoxic response and angiogenesis. The crosstalk between internal and external parts of solid tumor tissue could be analyzed by sectioning each layer of the paper-based solid tumor. This approach provides a favorable analytical method for the discovery of the interaction between cancer cells, hypoxia, and peripheral angiogenesis.


Asunto(s)
Xenoinjertos , Hipoxia/fisiopatología , Neoplasias/fisiopatología , Papel , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/fisiopatología , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Methods Mol Biol ; 2269: 83-92, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33687673

RESUMEN

A co-culture model of mesenchymal stem cells (MSCs) and fibroblasts is an efficient and rapid method to evaluate the anti-fibrotic effects of MSCs-based cell therapy. Transforming growth factor (TGF)-ß1 plays a key role in promotion of fibroblast activation and differentiation which can induce collagen deposition, increase ECM production in lung tissue, eventually resulted in pulmonary fibrosis. Here, we use this co-culture system and examine the ECM production in activated fibroblasts by western blot and quantitative real-time analysis to understand the therapeutic effects of MSCs.


Asunto(s)
Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fibrosis Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/efectos adversos , Animales , Línea Celular , Técnicas de Cocultivo , Fibroblastos/patología , Células Madre Mesenquimatosas/patología , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA