Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nucleic Acids Res ; 51(14): 7392-7408, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37351621

RESUMEN

Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.


Asunto(s)
ADN Mitocondrial , G-Cuádruplex , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Replicación del ADN/genética
2.
J Am Chem Soc ; 146(10): 6926-6935, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38430200

RESUMEN

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.


Asunto(s)
ADN , G-Cuádruplex , Humanos , Ligandos , ADN/química , Oligonucleótidos
3.
Mol Cell ; 57(3): 445-55, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25620560

RESUMEN

Curli are extracellular functional amyloids that are assembled by enteric bacteria during biofilm formation and host colonization. An efficient secretion system and chaperone network ensures that the major curli fiber subunit, CsgA, does not form intracellular amyloid aggregates. We discovered that the periplasmic protein CsgC was a highly effective inhibitor of CsgA amyloid formation. In the absence of CsgC, CsgA formed toxic intracellular aggregates. In vitro, CsgC inhibited CsgA amyloid formation at substoichiometric concentrations and maintained CsgA in a non-ß-sheet-rich conformation. Interestingly, CsgC inhibited amyloid assembly of human α-synuclein, but not Aß42, in vitro. We identified a common D-Q-Φ-X0,1-G-K-N-ζ-E motif in CsgC client proteins that is not found in Aß42. CsgC is therefore both an efficient and selective amyloid inhibitor. Dedicated functional amyloid inhibitors may be a key feature that distinguishes functional amyloids from disease-associated amyloids.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacología , Escherichia coli/genética , Agregado de Proteínas/efectos de los fármacos , alfa-Sinucleína/metabolismo , Secuencias de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Secuencia de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Técnicas In Vitro , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , alfa-Sinucleína/química
4.
Chemistry ; 28(65): e202202020, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35997141

RESUMEN

This study aims to deepen the knowledge of the current state of rational G4-ligand design through the design and synthesis of a novel set of compounds based on indoles, quinolines, and benzofurans and their comparisons with well-known G4-ligands. This resulted in novel synthetic methods and G4-ligands that bind and stabilize G4 DNA with high selectivity. Furthermore, the study corroborates previous studies on the design of G4-ligands and adds deeper explanations to why a) macrocycles offer advantages in terms of G4-binding and -selectivity, b) molecular pre-organization is of key importance in the development of strong novel binders, c) an electron-deficient aromatic core is essential to engage in strong arene-arene interactions with the G4-surface, and d) aliphatic amines can strengthen interactions indirectly through changing the arene electrostatic nature of the compound. Finally, fundamental physicochemical properties of selected G4-binders are evaluated, underscoring the complexity of aligning the properties required for efficient G4 binding and stabilization with feasible pharmacokinetic properties.


Asunto(s)
G-Cuádruplex , Quinolinas , Ligandos , ADN/química , Indoles/química , Quinolinas/química
5.
Nucleic Acids Res ; 48(19): 10998-11015, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33045725

RESUMEN

G-quadruplex (G4) structures are stable non-canonical DNA structures that are implicated in the regulation of many cellular pathways. We show here that the G4-stabilizing compound PhenDC3 causes growth defects in Schizosaccharomyces pombe cells, especially during S-phase in synchronized cultures. By visualizing individual DNA molecules, we observed shorter DNA fragments of newly replicated DNA in the PhenDC3-treated cells, suggesting that PhenDC3 impedes replication fork progression. Furthermore, a novel single DNA molecule damage assay revealed increased single-strand DNA lesions in the PhenDC3-treated cells. Moreover, chromatin immunoprecipitation showed enrichment of the leading-strand DNA polymerase at sites of predicted G4 structures, suggesting that these structures impede DNA replication. We tested a subset of these sites and showed that they form G4 structures, that they stall DNA synthesis in vitro and that they can be resolved by the breast cancer-associated Pif1 family helicases. Our results thus suggest that G4 structures occur in S. pombe and that stabilized/unresolved G4 structures are obstacles for the replication machinery. The increased levels of DNA damage might further highlight the association of the human Pif1 helicase with familial breast cancer and the onset of other human diseases connected to unresolved G4 structures.


Asunto(s)
Roturas del ADN de Cadena Simple , Replicación del ADN , ADN de Hongos/química , G-Cuádruplex , Schizosaccharomyces/genética , ADN Helicasas/fisiología , Compuestos de Anillos Fusionados/farmacología , Fase S , Proteínas de Schizosaccharomyces pombe/fisiología
6.
Nucleic Acids Res ; 48(3): 1108-1119, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31912160

RESUMEN

G-quadruplex (G4) DNA structures are linked to key biological processes and human diseases. Small molecules that target specific G4 DNA structures and signal their presence would therefore be of great value as chemical research tools with potential to further advance towards diagnostic and therapeutic developments. However, the development of these types of specific compounds remain as a great challenge. In here, we have developed a compound with ability to specifically signal a certain c-MYC G4 DNA structure through a fluorescence light-up mechanism. Despite the compound's two binding sites on the G4 DNA structure, only one of them result in the fluorescence light-up effect. This G-tetrad selectivity proved to originate from a difference in flexibility that affected the binding affinity and tilt the compound out of the planar conformation required for the fluorescence light-up mechanism. The intertwined relation between the presented factors is likely the reason for the lack of examples using rational design to develop compounds with turn-on emission that specifically target certain G4 DNA structures. However, this study shows that it is indeed possible to develop such compounds and present insights into the molecular details of specific G4 DNA recognition and signaling to advance future studies of G4 biology.


Asunto(s)
ADN/química , Colorantes Fluorescentes , G-Cuádruplex , Bencimidazoles/química , Benzotiazoles/química , Colorantes Fluorescentes/química , Genes myc , Simulación de Dinámica Molecular
7.
Proc Natl Acad Sci U S A ; 116(21): 10510-10517, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31061116

RESUMEN

Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Isoniazida , Mycobacterium tuberculosis/efectos de los fármacos , Evaluación Preclínica de Medicamentos
8.
J Am Chem Soc ; 142(6): 2876-2888, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31990532

RESUMEN

The signal transducer and activator of transcription 3 (STAT3) protein is a master regulator of most key hallmarks and enablers of cancer, including cell proliferation and the response to DNA damage. G-Quadruplex (G4) structures are four-stranded noncanonical DNA structures enriched at telomeres and oncogenes' promoters. In cancer cells, stabilization of G4 DNAs leads to replication stress and DNA damage accumulation and is therefore considered a promising target for oncotherapy. Here, we designed and synthesized novel quinazoline-based compounds that simultaneously and selectively affect these two well-recognized cancer targets, G4 DNA structures and the STAT3 protein. Using a combination of in vitro assays, NMR, and molecular dynamics simulations, we show that these small, uncharged compounds not only bind to the STAT3 protein but also stabilize G4 structures. In human cultured cells, the compounds inhibit phosphorylation-dependent activation of STAT3 without affecting the antiapoptotic factor STAT1 and cause increased formation of G4 structures, as revealed by the use of a G4 DNA-specific antibody. As a result, treated cells show slower DNA replication, DNA damage checkpoint activation, and an increased apoptotic rate. Importantly, cancer cells are more sensitive to these molecules compared to noncancerous cell lines. This is the first report of a promising class of compounds that not only targets the DNA damage cancer response machinery but also simultaneously inhibits the STAT3-induced cancer cell proliferation, demonstrating a novel approach in cancer therapy.


Asunto(s)
G-Cuádruplex , Neoplasias/patología , Quinazolinas/química , Factor de Transcripción STAT3/metabolismo , Muerte Celular , Humanos , Ligandos , Neoplasias/metabolismo
9.
Chemistry ; 26(43): 9561-9572, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187406

RESUMEN

G-quadruplex (G4) DNA structures are linked to fundamental biological processes and human diseases, which has triggered the development of compounds that affect these DNA structures. However, more knowledge is needed about how small molecules interact with G4 DNA structures. This study describes the development of a new class of bis-indoles (3,3-diindolyl-methyl derivatives) and detailed studies of how they interact with G4 DNA using orthogonal assays, biophysical techniques, and computational studies. This revealed compounds that strongly bind and stabilize G4 DNA structures, and detailed binding interactions which for example, show that charge variance can play a key role in G4 DNA binding. Furthermore, the structure-activity relationships generated opened the possibilities to replace or introduce new substituents on the core structure, which is of key importance to optimize compound properties or introduce probes to further expand the possibilities of these compounds as tailored research tools to study G4 biology.


Asunto(s)
ADN/química , Indoles/química , G-Cuádruplex , Humanos , Relación Estructura-Actividad
10.
Angew Chem Int Ed Engl ; 59(2): 896-902, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31644837

RESUMEN

The design of turn-on dyes with optical signals sensitive to the formation of supramolecular structures provides fascinating and underexplored opportunities for G-quadruplex (G4) DNA detection and characterization. Here, we show a new switching mechanism that relies on the recognition-driven disaggregation (on-signal) of an ultrabright coumarin-quinazoline conjugate. The synthesized probe selectively lights-up parallel G4 DNA structures via the disassembly of its supramolecular state, demonstrating outputs that are easily integrable into a label-free molecular logic system. Finally, our molecule preferentially stains the G4-rich nucleoli of cancer cells.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , G-Cuádruplex , Espectrometría de Fluorescencia/métodos , Humanos
11.
Chemistry ; 24(31): 7926-7938, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29603472

RESUMEN

Small molecules that target G-quadruplex (G4) DNA structures are not only valuable to study G4 biology but also for their potential as therapeutics. This work centers around how different design features of small molecules can affect the interactions with G4 DNA structures, exemplified by the development of synthetic methods to bis-indole scaffolds. Our synthesized series of bis-indole scaffolds are structurally very similar but differ greatly in the flexibility of their core structures. The flexibility of the molecules proved to be an advantage compared to locking the compounds in the presumed bioactive G4 conformation. The flexible derivatives demonstrated similar or even improved G4 binding and stabilization in several orthogonal assays even though their entropic penalty of binding is higher. In addition, molecular dynamics simulations with the c-MYC G4 structure showed that the flexible compounds adapt better to the surrounding. This was reflected by an increased number of both stacking and polar interactions with both the residues in the G4 DNA structure and the DNA residues just upstream of the G4 structure.


Asunto(s)
ADN/química , G-Cuádruplex , Indoles/química , Sitios de Unión , Humanos , Ligandos , Simulación de Dinámica Molecular , Relación Estructura-Actividad , Termodinámica
12.
Chemistry ; 22(52): 18932-18943, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27862378

RESUMEN

Small molecules are used in the G-quadruplex (G4) research field in vivo and in vitro, and there are increasing demands for ligands that selectively stabilize different G4 structures. Thioflavin T (ThT) emits an enhanced fluorescence signal when binding to G4 structures. Herein, we show that ThT can be competitively displaced by the binding of small molecules to G4 structures and develop a ThT-displacement high-throughput screening assay to find novel and selective G4-binding compounds. We screened approximately 28 000 compounds by using three different G4 structures and identified eight novel G4 binders. Analysis of the structural conformation and stability of the G4 structures in presence of these compounds demonstrated that the four compounds enhance the thermal stabilization of the structures without affecting their structural conformation. In addition, all four compounds also increased the G4-structure block of DNA synthesis by Taq DNA polymerase. Also, two of these compounds showed selectivity between certain Schizosaccharomyces pombe G4 structures, thus suggesting that these compounds or their analogues can be used as selective tools for G4 DNA studies.


Asunto(s)
G-Cuádruplex , Tiazoles/química , Benzotiazoles , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Ligandos
13.
Chemistry ; 22(37): 13004-9, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27431593

RESUMEN

G-quadruplex (G4) structures carry vital biological functions, and compounds that selectively target certain G4 structures have both therapeutic potential and value as research tools. Along this line, 2,2'-diindolylmethanes have been designed and synthesized in this work based on the condensation of 3,6- or 3,7-disubstituted indoles with aldehydes. The developed class of compounds efficiently stabilizes G4 structures without inducing conformational changes in such structures. Furthermore, the 2,2'-diindolylmethanes target certain G4 structures more efficiently than others and this G4 selectivity can be altered by chemical modifications of the compounds.


Asunto(s)
ADN/química , G-Cuádruplex , Indoles/síntesis química , Aldehídos/química , Sitios de Unión , Indoles/química , Conformación Molecular , Relación Estructura-Actividad
14.
Biochem Biophys Res Commun ; 466(2): 192-5, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26343304

RESUMEN

The insulin-degrading enzyme (IDE) plays a key role in type-2 diabetes and typically degrades small peptides such as insulin, amyloid ß and islet amyloid polypeptide. We recently reported a novel non-proteolytical interaction in vitro between IDE and the Parkinson's disease 140-residue protein α-synuclein that resulted in dual effects: arrested α-synuclein oligomers and, simultaneously, increased IDE proteolysis activity. Here we demonstrate that these outcomes arise due to IDE interactions with the C-terminus of α-synuclein. Whereas a peptide containing the first 97 residues of α-synuclein did not improve IDE activity and its aggregation was not blocked by IDE, a peptide with the C-terminal 44 residues of α-synuclein increased IDE proteolysis to the same degree as full-length α-synuclein. Because the α-synuclein C-terminus is acidic, the interaction appears to involve electrostatic attraction with IDE's basic exosite, known to be involved in activation.


Asunto(s)
Insulisina/metabolismo , alfa-Sinucleína/metabolismo , Activación Enzimática , Microscopía de Fuerza Atómica , alfa-Sinucleína/química
15.
Org Biomol Chem ; 12(25): 4461-70, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24849574

RESUMEN

The phthalimide scaffold is recognized from bioactive compounds and marketed drugs, but can also be used as fluorescent probes by introducing a 4-amino substituent. Unfortunately, a general and convenient method to synthesize various 4-amino substituted phthalimides has been lacking. To overcome this, an atom efficient one-step synthesis of 4-amino substituted phthalimides in good to excellent yields that tolerate a wide range of substituents has been developed. Several of the generated compounds display interesting solvatochromic properties with high quantum yield of fluorescence in non-polar solvents that are significantly reduced in polar protic solvents. Many of these compounds displayed non-toxic properties and non-detectable unspecific binding and can thus potentially be linked to a substrate and used as fluorescent probes. Furthermore, bioactive and fluorescent 4-amino substituted phthalimides with IC50-values in the low micromolar range in cell-based assays have been identified and could be used to study uptake and distribution. The developed convenient synthetic method is thus valuable not only to construct fluorescent probes and fluorescent bioactive compounds to gain information about target binding, but also from a structure activity point of view in the various areas where the phthalimides have displayed activity.


Asunto(s)
Química Orgánica/métodos , Colorantes Fluorescentes/síntesis química , Ftalimidas/síntesis química , Línea Celular Tumoral , Supervivencia Celular , Colorantes Fluorescentes/química , Humanos , Ftalimidas/química
16.
Org Biomol Chem ; 12(12): 1942-56, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24531242

RESUMEN

Developing new compounds targeting virulence factors (e.g., inhibition of pilus assembly by pilicides) is a promising approach to combating bacterial infection. A high-throughput screening campaign of a library of 17 500 small molecules identified 2-amino-3-acyl-tetrahydrobenzothiophene derivatives (hits 2 and 3) as novel inhibitors of pili-dependent biofilm formation in a uropathogenic Escherichia coli strain UTI89. Based on compounds 2 and 3 as the starting point, we designed and synthesized a series of structurally related analogs and investigated their activity against biofilm formation of E. coli UTI89. Systematic structural modification of the initial hits provided valuable information on their SARs for further optimization. In addition, small structural changes to the parent molecules resulted in low micromolar inhibitors (20-23) of E. coli biofilm development without an effect on bacterial growth. The hit compound 3 and its analog 20 were confirmed to prevent pili formation in a hemagglutination (HA) titer assay and electron microscopy (EM) measurements. These findings suggest that 2-amino-3-acyl-tetrahydrobenzothiophenes may serve as a new class of compounds for further elaboration as antibacterial agents with antivirulence activity.


Asunto(s)
Anilidas/farmacología , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Tiofenos/farmacología , Factores de Virulencia/antagonistas & inhibidores , Anilidas/síntesis química , Anilidas/química , Antibacterianos/síntesis química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química
17.
J Med Chem ; 67(3): 2202-2219, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38241609

RESUMEN

G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.


Asunto(s)
ADN , G-Cuádruplex , Ligandos , Electricidad Estática , ADN/metabolismo , Regiones Promotoras Genéticas
18.
J Org Chem ; 78(23): 12207-13, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24161000

RESUMEN

Thiazolino fused 2-pyridone peptidomimetics are of significant biological importance due to their ability to interfere with adhesive fiber formation in uropathogenic Escherichia coli and oligomerization of amyloid fibers. We have developed an efficient synthetic route to fluorescent BODIPY analogues, with structural diversification from a key intermediate enabling introduction of C-2 substituents and late incorporation of the BODIPY moiety. A mild lithium halide mediated hydrolysis enabled preparation of peptidomimetic fluorophores with useful photophysical properties for further chemical biology applications.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes/síntesis química , Peptidomiméticos , Piridonas/química , Tiazoles/síntesis química , Colorantes Fluorescentes/química , Estructura Molecular , Tiazoles/química
19.
J Phys Chem Lett ; 14(7): 1862-1869, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36779779

RESUMEN

Molecular self-assembly is a powerful tool for the development of functional nanostructures with adaptive optical properties. However, in aqueous solution, the hydrophobic effects in the monomeric units often afford supramolecular architectures with typical side-by-side π-stacking arrangement with compromised emissive properties. Here, we report on the role of parallel DNA guanine quadruplexes (G4s) as supramolecular disaggregating-capture systems capable of coordinating a zwitterionic fluorine-boron-based dye and promoting activation of its fluorescence signal. The dye's high binding affinity for parallel G4s compared to nonparallel topologies leads to a selective disassembly of the dye's supramolecular state upon contact with parallel G4s. This results in a strong and selective disaggregation-induced emission that signals the presence of parallel G4s observable by the naked eye and inside cells. The molecular recognition strategy reported here will be useful for a multitude of affinity-based applications with potential in sensing and imaging systems.


Asunto(s)
G-Cuádruplex , Genoma Mitocondrial , Colorantes Fluorescentes/química , Boro , Flúor , ADN/química
20.
Eur J Med Chem ; 248: 115103, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36645982

RESUMEN

G-quadruplex (G4) DNA structures are involved in central biological processes such as DNA replication and transcription. These DNA structures are enriched in promotor regions of oncogenes and are thus promising as novel gene silencing therapeutic targets that can be used to regulate expression of oncoproteins and in particular those that has proven hard to drug with conventional strategies. G4 DNA structures in general have a well-defined and hydrophobic binding area that also is very flat and featureless and there are ample examples of G4 ligands but their further progression towards drug development is limited. In this study, we use synthetic organic chemistry to equip a drug-like and low molecular weight central fragment with different side chains and evaluate how this affect the compound's selectivity and ability to bind and stabilize G4 DNA. Furthermore, we study the binding interactions of the compounds and connect the experimental observations with the compound's structural conformations and electrostatic potentials to understand the basis for the observed improvements. Finally, we evaluate the top candidates' ability to selectively reduce cancer cell growth in a 3D co-culture model of pancreatic cancer which show that this is a powerful approach to generate highly active and selective low molecular weight G4 ligands with a promising therapeutic window.


Asunto(s)
G-Cuádruplex , Ligandos , ADN/metabolismo , Oncogenes , Pirimidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA