Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(22): 9007-9015, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38778775

RESUMEN

This study explores the synthesis and characterization of aggregation-induced emission enhancement (AIEE)-active gold nanoclusters (AuNCs), focusing on their near-infrared luminescence properties and potential applications in biological imaging. These AIEE-active AuNCs were synthesized via the NaBH4-mediated reduction of HAuCl4 in the presence of peptides. We systematically investigated the influence of the peptide sequence on the optical features of the AuNCs, highlighting the role of glutamic acid in enhancing their quantum yield (QY). Among the synthesized peptide-stabilized AuNCs, EECEE-stabilized AuNCs exhibited the maximum QY and a pronounced AIEE effect at pH 5.0, making them suitable for the luminescence imaging of intracellular lysosomes. The AIEE characteristic of the EECEE-stabilized AuNCs was demonstrated through examinations using transmission electron microscopy, dynamic light scattering, zeta potential analysis, and single-particle imaging. The formation of the EECEE-stabilized AuNCs was confirmed by size-exclusion chromatography and mass spectrometry. Spectroscopic and electrochemical examinations uncover the formation process of EECEE-stabilized AuNCs, comprising EECEE-mediated reduction, NaBH4-induced nucleation, complex aggregation, and subsequent cluster growth. Furthermore, we demonstrated the utility of these AuNCs as luminescent probes for intracellular lysosomal imaging, leveraging their pH-responsive AIEE behavior. Additionally, cyclic arginylglycylaspartic acid (RGD)-modified AIEE dots, derived from cyclic RGD-linked peptide-induced aggregation of EECEE-stabilized AuNCs, were developed for single- and two-photon luminescence imaging of αvß3 integrin receptor-positive cancer cells.


Asunto(s)
Oro , Integrina alfaVbeta3 , Lisosomas , Nanopartículas del Metal , Imagen Óptica , Humanos , Oro/química , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/análisis , Lisosomas/química , Lisosomas/metabolismo , Nanopartículas del Metal/química , Péptidos/química , Fotones
2.
Biosens Bioelectron ; 193: 113522, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34315066

RESUMEN

Sensors that can specifically and accurately detect glycosaminoglycans are rare. Here, a dual-mode platform for fluorescence intensity and lifetime sensing of plasma heparin and fluorescence imaging of heparan sulfate proteoglycan-expressed cancer cells was developed by stabilizing the intramolecular charge transfer (ICT) state of dansyl acid-labeling AG73 (DA-AG73) peptide with glutathione-capped gold nanoclusters (GSH-AuNCs). DA-AG73 peptides, including an electron-donor dimethylamino group and an electron-withdrawing sulfonamide moiety in the labeled DA molecules, emitted weak fluorescence due to the formation of the twisted ICT excited state. The complexation of heparin with DA-AG73 peptides followed by interacting with the GSH-AuNCs could restrict the rotation of the dimethylamino groups of the labeled DA molecules, triggering the transition from their twisted ICT state to ICT excited state. As a result, the fluorescence intensity and lifetime of the labeled DA molecules in DA-AG73 peptides were gradually enhanced with increasing the heparin concentration. The proposed platform provided excellent selectivity toward heparin and heparan sulfate and exhibited two linear calibration curves for quantifying 20-800 nM and 20-1000 nM heparin in the fluorescence intensity and lifetime modes, respectively. The proposed platform was practically applied for the fluorescence intensity and lifetime determination of plasma heparin and for the selective imaging of heparan sulfate proteoglycan-expressed cells.


Asunto(s)
Técnicas Biosensibles , Glicosaminoglicanos , Compuestos de Dansilo , Glutatión , Oro , Heparina , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA