Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 49(6): 1778-1809, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35284969

RESUMEN

The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.


Asunto(s)
Traumatismos por Radiación , Receptores de Somatostatina , Humanos , Ligandos , Lutecio/uso terapéutico , Masculino , Antígeno Prostático Específico , Radioisótopos , Radiofármacos/efectos adversos , Somatostatina
2.
Int J Mol Sci ; 20(10)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137758

RESUMEN

Although positron emission tomography (PET) imaging with 18-Fluorodeoxyglucose (18F-FDG) is a promising technique in multiple myeloma (MM), the development of other radiopharmaceuticals seems relevant. CD138 is currently used as a standard marker for the identification of myeloma cells and could be used in phenotype tumor imaging. In this study, we used an anti-CD138 murine antibody (9E7.4) radiolabeled with copper-64 (64Cu) or zirconium-89 (89Zr) and compared them in a syngeneic mouse model to select the optimal tracers for MM PET imaging. Then, 9E7.4 was conjugated to TE2A-benzyl isothiocyanate (TE2A) and desferrioxamine (DFO) chelators for 64Cu and 89Zr labeling, respectively. 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 antibodies were evaluated by PET imaging and biodistribution studies in C57BL/KaLwRij mice bearing either 5T33-MM subcutaneous tumors or bone lesions and were compared to 18F-FDG-PET imaging. In biodistribution and PET studies, 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 displayed comparable good tumor uptake of subcutaneous tumors. On the bone lesions, PET imaging with 64Cu-TE2A-9E7.4 and 89Zr-DFO-9E7.4 showed higher uptake than with 18F-FDG-PET. Comparison of both 9E7.4 conjugates revealed higher nonspecific bone uptakes of 89Zr-DFO-9E7.4 than 64Cu-TE2A-9E7.4. Because of free 89Zr's tropism for bone when using 89Zr-anti-CD138, 64Cu-anti-CD138 antibody had the most optimal tumor-to-nontarget tissue ratios for translation into humans as a specific new imaging radiopharmaceutical agent in MM.


Asunto(s)
Neoplasias Óseas/diagnóstico por imagen , Radioisótopos de Cobre/farmacocinética , Mieloma Múltiple/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radioisótopos/farmacocinética , Radiofármacos/farmacocinética , Sindecano-1/inmunología , Circonio/farmacocinética , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Neoplasias Óseas/secundario , Línea Celular , Línea Celular Tumoral , Radioisótopos de Cobre/efectos adversos , Radioisótopos de Cobre/química , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Ratones , Ratones Endogámicos C57BL , Mieloma Múltiple/patología , Radioisótopos/efectos adversos , Radioisótopos/química , Radiofármacos/efectos adversos , Radiofármacos/química , Sindecano-1/química , Distribución Tisular , Circonio/efectos adversos , Circonio/química
4.
Int J Mol Sci ; 16(2): 3932-54, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25679452

RESUMEN

This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Radioisótopos , Diagnóstico por Imagen , Humanos , Radioinmunoterapia/métodos , Radioisótopos/administración & dosificación , Cintigrafía
6.
EBioMedicine ; 105: 105202, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38905749

RESUMEN

BACKGROUND: Glioblastoma (GB), the most aggressive brain cancer, remains a critical clinical challenge due to its resistance to conventional treatments. Here, we introduce a locoregional targeted-α-therapy (TAT) with the rat monoclonal antibody 9E7.4 targeting murine syndecan-1 (SDC1) coupled to the α-emitter radionuclide astatine-211 (211At-9E7.4). METHODS: We orthotopically transplanted 50,000 GL261 cells of murine GB into the right striatum of syngeneic female C57BL/6JRj mice using stereotaxis. After MRI validation of tumour presence at day 11, TAT was injected at the same coordinates. Biodistribution, efficacy, toxicity, local and systemic responses were assessed following application of this protocol. The 9E7.4 monoclonal antibody was labelled with iodine-125 (125I) for biodistribution and with astatine-211 (211At) for the other experiments. FINDINGS: The 211At-9E7.4 TAT demonstrated robust efficacy in reducing orthotopic tumours and achieved improved survival rates in the C57BL/6JRj model, reaching up to 70% with a minimal activity of 100 kBq. Targeting SDC1 ensured the cerebral retention of 211At over an optimal time window, enabling low-activity administration with a minimal toxicity profile. Moreover, TAT substantially reduced the occurrence of secondary tumours and provided resistance to new tumour development after contralateral rechallenge, mediated through the activation of central and effector memory T cells. INTERPRETATION: The locoregional 211At-9E7.4 TAT stands as one of the most efficient TAT across all preclinical GB models. This study validates SDC1 as a pertinent therapeutic target for GB and underscores 211At-9E7.4 TAT as a promising advancement to improve the treatment and quality of life for patients with GB. FUNDING: This work was funded by the French National Agency for Research (ANR) "France 2030 Investment Plan" Labex Iron [ANR-11-LABX-18-01], The SIRIC ILIAD [INCa-DGOS-INSERM-18011], the French program "Infrastructure d'Avenir en Biologie-Santé" (France Life Imaging) [ANR-11-INBS-0006], the PIA3 of the ANR, integrated to the "France 2030 Investment Plan" [ANR-21-RHUS-0012], and support from Inviscan SAS (Strasbourg, France). It was also related to: the ANR under the frame of EuroNanoMed III (project GLIOSILK) [ANR-19-ENM3-0003-01]; the "Région Pays-de-la-Loire" under the frame of the Target'In project; the "Ligue Nationale contre le Cancer" and the "Comité Départemental de Maine-et-Loire de la Ligue contre le Cancer" (CD49) under the frame of the FusTarG project and the "Tumour targeting, imaging and radio-therapies network" of the "Cancéropôle Grand-Ouest" (France). This work was also funded by the Institut National de la Santé et de la Recherche Médicale (INSERM), the University of Nantes, and the University of Angers.

7.
EJNMMI Res ; 13(1): 59, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314509

RESUMEN

The development of diagnostic and therapeutic radiopharmaceuticals is an hot topic in nuclear medicine. Several radiolabeled antibodies are under development necessitating both biokinetic and dosimetry extrapolations for effective human translation. The validation of different animal-to-human dosimetry extrapolation methods still is an open issue. This study reports the mice-to-human dosimetry extrapolation of 64Cu/177Lu 1C1m-Fc anti-TEM-1 for theranostic application in soft-tissue sarcomas. We adopt four methods; direct mice-to-human extrapolation (M1); dosimetry extrapolation considering a relative mass scaling factor (M2), application of a metabolic scaling factor (M3) and combination of M2 and M3 (M4). Predicted in-human dosimetry for the [64Cu]Cu-1C1m-Fc resulted in an effective dose of 0.05 mSv/MBq. Absorbed dose (AD) extrapolation for the [177Lu]Lu-1C1m-Fc indicated that the AD of 2 Gy and 4 Gy to the red-marrow and total-body can be reached with 5-10 GBq and 25-30 GBq of therapeutic activity administration respectively depending on applied dosimetry method. Dosimetry extrapolation methods provided significantly different absorbed doses in organs. Dosimetry properties for the [64Cu]Cu-1C1m-Fc are suitable for a diagnostic in-human use. The therapeutic application of [177Lu]Lu-1C1m-Fc presents challenges and would benefit from further assessments in animals' models such as dogs before moving into the clinic.

8.
Pharmaceutics ; 15(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37514004

RESUMEN

Although the concept of theranostics is neither new nor exclusive to nuclear medicine, it is a particularly promising approach for the future of nuclear oncology. This approach is based on the use of molecules targeting specific biomarkers in the tumour or its microenvironment, associated with optimal radionuclides which, depending on their emission properties, allow the combination of diagnosis by molecular imaging and targeted radionuclide therapy (TRT). Copper-64 has suitable decay properties (both ß+ and ß- decays) for PET imaging and potentially for TRT, making it both an imaging and therapy agent. We developed and evaluated a theranostic approach using a copper-64 radiolabelled anti-CD138 antibody, [64Cu]Cu-TE1PA-9E7.4 in a MOPC315.BM mouse model of multiple myeloma. PET imaging using [64Cu]Cu-TE1PA-9E7.4 allows for high-resolution PET images. Dosimetric estimation from ex vivo biodistribution data revealed acceptable delivered doses to healthy organs and tissues, and a very encouraging tumour absorbed dose for TRT applications. Therapeutic efficacy resulting in delayed tumour growth and increased survival without inducing major or irreversible toxicity has been observed with 2 doses of 35 MBq administered at a 2-week interval. Repeated injections of [64Cu]Cu-TE1PA-9E7.4 are safe and can be effective for TRT application in this syngeneic preclinical model of MM.

10.
Int J Radiat Oncol Biol Phys ; 112(3): 790-801, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699930

RESUMEN

PURPOSE: The tumor microenvironment (TME) can severely impair immunotherapy efficacy by repressing the immune system. In a multiple myeloma (MM) murine model, we investigated the impact of targeted alpha particle therapy (TAT) on the immune TME. TAT was combined with an adoptive cell transfer of CD8 T cells (ACT), and the mechanisms of action of this combination were assessed at the tumor site. METHODS AND MATERIALS: This combination treatment was conducted in a syngeneic MM murine model grafted subcutaneously. TAT was delivered by intravenous injection of a bismuth-213 radiolabeled anti-CD138 antibody. To strengthen antitumor immune response, TAT was combined with an ACT of tumor-specific CD8+ OT-1 T-cells. The tumors were collected and the immune TME analyzed by flow cytometry, immunohistochemistry, and ex vivo T-cell motility assay on tumor slices. The chemokine and cytokine productions were also assessed by quantitative reverse transcription polymerase chain reaction. RESULTS: Tumor-specific CD8+ OT-1 T cells infiltrated the tumors after ACT. However, only treatment with TAT resulted in regulatory CD4 T-cell drop and transient increased production of interleukin-2, CCL-5, and interferon-γ within the tumor. Moreover, OT-1 T-cell recruitment and motility were increased on tumor slices from TAT-treated mice, as observed via ex vivo time lapse, contributing to a more homogeneous distribution of OT-1 T cells in the tumor. Subsequently, the tumor cells increased PD-L1 expression, antitumor cytokine production decreased, and OT-1 T-cells overexpressed exhaustion markers, suggesting an exhaustion of the immune response. CONCLUSION: Combining TAT and ACT seems to transiently remodel the cold TME, improving ACT efficiency. The immune response then leads to the establishment of other tumor cell resistance mechanisms.


Asunto(s)
Partículas alfa , Microambiente Tumoral , Animales , Linfocitos T CD8-positivos , Línea Celular Tumoral , Inmunoterapia/métodos , Ratones
11.
Cancers (Basel) ; 13(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809167

RESUMEN

PD-L1 (programmed death-ligand 1, B7-H1, CD274), the ligand for PD-1 inhibitory receptor, is expressed on various tumors, and its expression is correlated with a poor prognosis in melanoma. Anti-PD-L1 mAbs have been developed along with anti-CTLA-4 and anti-PD-1 antibodies for immune checkpoint inhibitor (ICI) therapy, and anti-PD-1 mAbs are now used as first line treatment in melanoma. However, many patients do not respond to ICI therapies, and therefore new treatment alternatives should be developed. Because of its expression on the tumor cells and on immunosuppressive cells within the tumor microenvironment, PD-L1 represents an interesting target for targeted alpha-particle therapy (TAT). We developed a TAT approach in a human melanoma xenograft model that stably expresses PD-L1 using a 213Bi-anti-human-PD-L1 mAb. Unlike treatment with unlabeled anti-human-PD-L1 mAb, TAT targeting PD-L1 significantly delayed melanoma tumor growth and improved animal survival. A slight decrease in platelets was observed, but no toxicity on red blood cells, bone marrow, liver or kidney was induced. Anti-tumor efficacy was associated with specific tumor targeting since no therapeutic effect was observed in animals bearing PD-L1 negative melanoma tumors. This study demonstrates that anti-PD-L1 antibodies may be used efficiently for TAT treatment in melanoma.

12.
Cancers (Basel) ; 12(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971984

RESUMEN

Despite therapeutic progress in recent years with the introduction of targeted therapies (daratumumab, elotuzumab), multiple myeloma remains an incurable cancer. The question is therefore to investigate the potential of targeted alpha therapy, combining an anti-CD138 antibody with astatine-211, to destroy the residual cells that cause relapses. A preclinical syngeneic mouse model, consisting of IV injection of 1 million of 5T33 cells in a KaLwRij C57/BL6 mouse, was treated 10 days later with an anti-mCD138 antibody, called 9E7.4, radiolabeled with astatine-211. Four activities of the 211At-9E7.4 radioimmunoconjugate were tested in two independent experiments: 370 kBq (n = 16), 555 kBq (n = 10), 740 kBq (n = 17) and 1100 kBq (n = 6). An isotype control was also tested at 555 kBq (n = 10). Biodistribution, survival rate, hematological parameters, enzymatic hepatic toxicity, histological examination and organ dosimetry were considered. The survival median of untreated mice was 45 days after engraftment. While the activity of 1100 kBq was highly toxic, the activity of 740 kBq offered the best efficacy with 65% of overall survival 150 days after the treatment with no evident sign of toxicity. This work demonstrates the pertinence of treating minimal residual disease of multiple myeloma with an anti-CD138 antibody coupled to astatine-211.

13.
Front Oncol ; 10: 20, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117707

RESUMEN

Antibodies directed against CD22 have been used in radioimmunotherapy (RIT) clinical trials to treat patients with diffuse large B-cell lymphoma (DLBCL) with promising results. However, relevant preclinical models are needed to facilitate the evaluation and optimization of new protocols. Spontaneous DLBCL in dogs is a tumor model that may help accelerate the development of new methodologies and therapeutic strategies for RIT targeting CD22. Seven murine monoclonal antibodies specific for canine CD22 were produced by the hybridoma method and characterized. The antibodies' affinity and epitopic maps, their internalization capability and usefulness for diagnosis in immunohistochemistry were determined. Biodistribution and PET imaging on a mouse xenogeneic model of dog DLBCL was used to choose the most promising antibody for our purposes. PET-CT results confirmed biodistribution study observations and allowed tumor localization. The selected antibody, 10C6, was successfully used on a dog with spontaneous DLBCL for SPECT-CT imaging in the context of disease staging, validating its efficacy for diagnosis and the feasibility of future RIT assays. This first attempt at phenotypic imaging on dogs paves the way to implementing quantitative imaging methodologies that would be transposable to humans in a theranostic approach. Taking into account the feedback of existing human radioimmunotherapy clinical trials targeting CD22, animal trials are planned to investigate protocol improvements that are difficult to consider in humans due to ethical concerns.

14.
Radiat Res ; 170(2): 192-200, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18666820

RESUMEN

To improve radioimmunotherapy with Auger electron emitters, we assessed whether the biological efficiency of (125)I varied according to its localization. A-431 and SK-OV-3 carcinoma cells were incubated with increasing activities (0-4 MBq/ml) of (125)I-labeled vectors targeting the cell membrane, the cytoplasm or the nucleus. We then measured cell survival by clonogenic assay and the mean radiation dose to the nucleus by assessing the cellular medical internal radiation dose (MIRD). The relationship between survival and the radiation dose delivered was investigated with a linear mixed regression model. For each cell line, we obtained dose-response curves for the three targets and the reference values (i.e., the dose leading to 75, 50 or 37% survival). When cell survival was expressed as a function of the total cumulative decays, nuclear (125)I disintegrations were more harmful than disintegrations in the cytoplasm or at the cell membrane. However, when survival was expressed as a function of the mean radiation dose to the nucleus, toxicity was significantly higher when (125)I was targeted to the cell membrane than to the cytoplasm. These findings indicate that the membrane is a more sensitive target than the cytoplasm for the dense ionization produced by Auger electrons. Moreover, cell membrane targeting is as cytotoxic as nuclear targeting in SK-OV-3 cells. We suggest that targeting the membrane rather than the cytoplasm may contribute to the development of more efficient radioimmunotherapies based on Auger electron radiation, also because most of the available vectors are directed against cell surface antigens.


Asunto(s)
Carcinoma/fisiopatología , Carcinoma/radioterapia , Membrana Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Citoplasma/efectos de la radiación , Sistemas de Liberación de Medicamentos/métodos , Radioisótopos de Yodo/administración & dosificación , Carcinoma/patología , Línea Celular Tumoral , Relación Dosis-Respuesta en la Radiación , Electrones , Femenino , Humanos , Dosis de Radiación
15.
Cancer Biother Radiopharm ; 33(8): 316-329, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30265573

RESUMEN

Scandium radionuclides have been identified in the late 1990s as promising for nuclear medicine applications, but have been set aside for about 20 years. Among the different isotopes of scandium, 43Sc and 44Sc are interesting for positron emission tomography imaging, whereas 47Sc is interesting for therapy. The 44Sc/47Sc or 43Sc/47Sc pairs could be thus envisaged as true theranostic pairs. Another interesting aspect of scandium is that its chemistry is governed by the trivalent ion, Sc3+. When combined with its hardness and its size, it gives this element a lanthanide-like behavior. It is then also possible to use it in a theranostic approach in combination with 177Lu or other lanthanides. This article aims to review the progresses that have been made over the last decade on scandium isotope production and coordination chemistry. It also reviews the radiolabeling aspects and the first (pre) clinical studies performed.


Asunto(s)
Radioisótopos/química , Radiofármacos/química , Escandio/química , Lutecio/química , Medicina Nuclear/métodos , Tomografía de Emisión de Positrones/métodos , Cintigrafía/métodos
16.
Oncotarget ; 9(10): 9061-9072, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29507674

RESUMEN

PURPOSE: Although recent data from the literature suggest that PET imaging with [18]-Fluorodeoxyglucose (18F-FDG) is a promising technique in multiple myeloma (MM), the development of other radiopharmaceuticals seems relevant. CD138 is currently used as a standard marker in many laboratories for the identification and purification of myeloma cells, and could be used in phenotype tumor imaging. In this study, we evaluated a 64Cu-labeled anti-CD138 murine antibody (64Cu-TE2A-9E7.4) and a metabolic tracer (64CuCl2) for PET imaging in a MM syngeneic mouse model. EXPERIMENTAL DESIGN AND RESULTS: 64Cu-TE2A-9E7.4 antibody and 64CuCl2 were evaluated via PET imaging and biodistribution studies in C57BL / KaLwRij mice bearing either 5T33-MM subcutaneous tumors or bone lesions. These results were compared to 18F-FDG-PET imaging. Autoradiography and histology of representative tumors were secondly conducted. In biodistribution and PET studies, 64Cu-TE2A-9E7.4 displayed good tumor uptake of subcutaneous and intra-medullary lesions, greater than that demonstrated with 18F-FDG-PET. In control experiments, only low-level, non-specific uptake of 64Cu-labeled isotype IgG was observed in tumors. Similarly, low activity concentrations of 64CuCl2 were accumulated in MM lesions. Histopathologic analysis of the immuno-PET-positive lesions revealed the presence of plasma cell infiltrates within the bone marrow. CONCLUSIONS: 64Cu-labeled anti-CD138 antibody can detect subcutaneous MM tumors and bone marrow lesions with high sensitivity, outperforming 18F-FDG-PET and 64CuCl2 in this preclinical model. These data support 64Cu-anti-CD138 antibody as a specific and promising new imaging radiopharmaceutical agent in MM.

17.
J Nucl Med ; 59(8): 1234-1242, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29674421

RESUMEN

We have developed the 16F12 mouse monoclonal antibody (mAb), which targets the Müllerian-inhibiting substance receptor, type II (MISRII), expressed by ovarian tumors. Here, we assessed in preclinical models the possibility of using radiolabeled 16F12 in a theranostic approach for small-volume ovarian peritoneal carcinomatosis, such as after cytoreductive surgery. Methods: DOTA-, DTPA- or deferoxamine mesylate-conjugated 16F12 mAb was radiolabeled with ß-particle (177Lu) or α-particle (213Bi) emitters for therapeutic use and with 89Zr for PET imaging. On the 13th postxenograft day, mice bearing intraperitoneal MISRII-positive AN3CA endometrial carcinoma cell xenografts were treated by conventional intraperitoneal radioimmunotherapy (IP-RIT) with 10 MBq of 177Lu-16F12 or 12.9 MBq of 213Bi-16F12 or by brief intraperitoneal radioimmunotherapy (BIP-RIT) using 50 MBq of 177Lu-16F12 or 37 MBq of 213Bi-16F12. For BIP-RIT, 30 min after injection of the radiolabeled mAbs, the peritoneal cavity was washed to remove the unbound radioactivity. The biodistribution of 177Lu- and 213Bi-16F12 mAbs was determined and then used for dose assessment. Hematologic toxicity was also monitored. Results: The 16F12 mAb was satisfactorily radiolabeled for both therapy and imaging. IP-RIT with 177Lu-16F12 was slightly more efficient in delaying tumor growth than IP-RIT with 213Bi-16F12. Conversely, 213Bi-16F12 was more efficient than 177Lu-16F12 in BIP-RIT. The biodistribution analysis showed that the tumor-to-blood uptake ratio was significantly higher with BIP-RIT than with IP-RIT for both 213Bi- and 177Lu-16F12. Hematologic toxicity was more pronounced with 177Lu-16F12 than with 213Bi-16F12. SPECT/CT images (after BIP-RIT with 177Lu-16F12) and PET/CT images (after injection of 89Zr-16F12 in the tail vein) showed focal uptake at the tumor site. Conclusion: Radiolabeled 16F12 could represent a new theranostic tool for small-volume ovarian peritoneal carcinomatosis. Specifically, 213Bi-16F12-based BIP-RIT could be proposed to selected patients as an alternative adjuvant treatment immediately after cytoreductive surgery. An anti-MISRII mAb is currently being used in a first-in-human study, thus making radiolabeled anti-MISRII mAbs a realistic theranostic option for the clinic.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/uso terapéutico , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/radioterapia , Receptores de Péptidos/inmunología , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Animales , Anticuerpos Monoclonales/farmacocinética , Línea Celular Tumoral , Deferoxamina/química , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Marcaje Isotópico , Ratones , Neoplasias Ováricas/metabolismo , Ácido Pentético/química , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioquímica , Distribución Tisular
18.
Cancer Biother Radiopharm ; 22(1): 125-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17461728

RESUMEN

GATE is a recent Monte Carlo code, based on GEANT4, and used in nuclear medicine mainly for imaging and detector design. Our goal was to implement dosimetry within GATE (i.e., combining the excellent potential of Gate for image modeling with GEANT4 dosimetric capabilities. The latest release of GEANT4 (4.8.1) completely revised the electron multiple scattering propagation algorithm. In this work, we calculated dose point kernels (DPK) for 0.01, 0.05, 0.1, 1, and 3 MeV monoenergetic electrons. We then compared our results with data obtained with another Monte Carlo code (MCNPX) or from the reference publication from Berger and Seltzer. To facilitate comparison, all calculated dose distributions were scaled to the corresponding R(CSDA), as given by the ESTAR NIST web database. Some GEANT4 parameters (i.e., Stepmax), or the shell thickness, had to be adjusted in order to achieve good agreement for energies below 1 MeV. For all energies except 10 keV, calculated DPKs do not differ significantly from the reference, as assessed by a Kolmogorov-Smirnov test. This preliminary step allowed us to consider the integration of GEANT4 dosimetric capabilities within the Gate framework.


Asunto(s)
Método de Montecarlo , Radiometría/métodos , Programas Informáticos , Reproducibilidad de los Resultados
19.
Cancer Biother Radiopharm ; 22(3): 387-92, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17651044

RESUMEN

A microdosimetric model for alpha-particle-emitting radiolabeled antibodies, based on an analytic method, was developed to be used for in vitro studies. The model took into consideration cell radii distributions or distributions of activity bound to cells, and calculated the single- and multihit distributions of specific energy within the target. The mean absorbed dose could then be derived from the specific energy spectra. The mean number of hits, the probability that no particle crossed the target, and the average lineal energy transfer at which the energy is deposited were also calculated. Many in vitro geometric configurations of cells (single cell, cellular monolayer, and cellular clusters) and many different distributions of radioactive sources observed in experiments (distribution on the cell surface or within the extracellular volume) could be modeled. To verify the implementation of our algorithm, a comparison was carried out for different sources and target configurations between our model and a general Monte Carlo code (MCNPX). A positive agreement was observed between the two approaches. By using the proposed model, computation speed was greatly improved, as compared with the Monte-Carlo approach. An example of the impact of some parameters (cell radii and activity distributions) on the dosimetric results is also given in this paper.


Asunto(s)
Partículas alfa/uso terapéutico , Radioinmunoterapia/métodos , Dosificación Radioterapéutica , Relación Dosis-Respuesta en la Radiación , Humanos , Miniaturización , Protección Radiológica
20.
J Nucl Med ; 58(4): 598-604, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27688477

RESUMEN

The goal of this study was to investigate whether targeted α-therapy can be used to successfully treat macrotumors, in addition to its established role for treating micrometastatic and minimal disease. We used an intravenous fractionated regimen of α-radioimmunotherapy in a subcutaneous tumor model in mice. We aimed to evaluate the absorbed dose levels required for tumor eradication and growth monitoring, as well as to evaluate long-term survival after treatment. Methods: Mice bearing subcutaneous tumors (50 mm3, NIH:OVCAR-3) were injected repeatedly (1-3 intravenous injections 7-10 d apart, allowing bone marrow recovery) with 211At-MX35-F(ab')2 at different activities (close to acute myelotoxicity). Mean absorbed doses to tumors and organs were estimated from biodistribution data and summed for the fractions. Tumor growth was monitored for 100 d and survival for 1 y after treatment. Toxicity analysis included body weight, white blood cell count, and hematocrit. Results: Effects on tumor growth after fractionated α-radioimmunotherapy with 211At-MX35-F(ab')2 was strong and dose-dependent. Complete remission (tumor-free fraction, 100%) was found for tumor doses of 12.4 and 16.4 Gy. The administered activities were high, and long-term toxicity effects (≤60 wk) were clear. Above 1 MBq, the median survival decreased linearly with injected activity, from 44 to 11 wk. Toxicity was also seen by reduced body weight. White blood cell count analysis after α-radioimmunotherapy indicated bone marrow recovery for the low-activity groups, whereas for high-activity groups the reduction was close to acute myelotoxicity. A decrease in hematocrit was seen at a late interval (34-59 wk after therapy). The main external indication of poor health was dehydration. Conclusion: Having observed complete eradication of solid tumor xenografts, we conclude that targeted α-therapy regimens may stretch beyond the realm of micrometastatic disease and be eradicative also for macrotumors. Our observations indicate that at least 10 Gy are required. This agrees well with the calculated tumor control probability. Considering a relative biological effectiveness of 5, this dose level seems reasonable. However, complete remission was achieved first at activity levels close to lethal and was accompanied by biologic effects that reduced long-term survival.


Asunto(s)
Partículas alfa/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Astato/uso terapéutico , Transformación Celular Neoplásica , Neoplasias Ováricas/radioterapia , Dosis de Radiación , Radioinmunoterapia/métodos , Animales , Anticuerpos Monoclonales/farmacocinética , Peso Corporal/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Radiometría , Análisis de Supervivencia , Factores de Tiempo , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA