Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 24(9): 1499-1510, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37500885

RESUMEN

Chimeric antigen receptor (CAR)-T cells are powerful therapeutics; however, their efficacy is often hindered by critical hurdles. Here utilizing the endocytic feature of the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) cytoplasmic tail, we reprogram CAR function and substantially enhance CAR-T efficacy in vivo. CAR-T cells with monomeric, duplex or triplex CTLA-4 cytoplasmic tails (CCTs) fused to the C terminus of CAR exhibit a progressive increase in cytotoxicity under repeated stimulation, accompanied by reduced activation and production of proinflammatory cytokines. Further characterization reveals that CARs with increasing CCT fusion show a progressively lower surface expression, regulated by their constant endocytosis, recycling and degradation under steady state. The molecular dynamics of reengineered CAR with CCT fusion results in reduced CAR-mediated trogocytosis, loss of tumor antigen and improved CAR-T survival. CARs with either monomeric (CAR-1CCT) or duplex CCTs (CAR-2CCT) have superior antitumor efficacy in a relapsed leukemia model. Single-cell RNA sequencing and flow cytometry analysis reveal that CAR-2CCT cells retain a stronger central memory phenotype and exhibit increased persistence. These findings illuminate a unique strategy for engineering therapeutic T cells and improving CAR-T function through synthetic CCT fusion, which is orthogonal to other cell engineering techniques.


Asunto(s)
Receptores Quiméricos de Antígenos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Antígeno CTLA-4/genética , Inmunoterapia Adoptiva/métodos , Linfocitos T , Citocinas/metabolismo , Abatacept , Receptores de Antígenos de Linfocitos T/genética , Línea Celular Tumoral
2.
Cell ; 178(5): 1189-1204.e23, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442407

RESUMEN

CD8 T cells play essential roles in anti-tumor immune responses. Here, we performed genome-scale CRISPR screens in CD8 T cells directly under cancer immunotherapy settings and identified regulators of tumor infiltration and degranulation. The in vivo screen robustly re-identified canonical immunotherapy targets such as PD-1 and Tim-3, along with genes that have not been characterized in T cells. The infiltration and degranulation screens converged on an RNA helicase Dhx37. Dhx37 knockout enhanced the efficacy of antigen-specific CD8 T cells against triple-negative breast cancer in vivo. Immunological characterization in mouse and human CD8 T cells revealed that DHX37 suppresses effector functions, cytokine production, and T cell activation. Transcriptomic profiling and biochemical interrogation revealed a role for DHX37 in modulating NF-κB. These data demonstrate high-throughput in vivo genetic screens for immunotherapy target discovery and establishes DHX37 as a functional regulator of CD8 T cells.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , ARN Helicasas/genética , Animales , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Citocinas/genética , Citocinas/metabolismo , Femenino , Humanos , Memoria Inmunológica , Inmunoterapia , Masculino , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , ARN Helicasas/deficiencia , ARN Guía de Kinetoplastida/metabolismo , Transcriptoma
3.
Nat Immunol ; 20(11): 1494-1505, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31611701

RESUMEN

Immunotherapy has transformed cancer treatment. However, current immunotherapy modalities face various limitations. In the present study, we developed multiplexed activation of endogenous genes as an immunotherapy (MAEGI), a new form of immunotherapy that elicits antitumor immunity through multiplexed activation of endogenous genes in tumors. We leveraged CRISPR activation (CRISPRa) to directly augment the in situ expression of endogenous genes, and thereby the presentation of tumor antigens, leading to dramatic antitumor immune responses. Deploying this as a cell-based vaccination strategy showed efficacy in both prophylactic and therapeutic settings. Intratumoral adeno-associated virus delivery of CRISPRa libraries elicited strong antitumor immunity across multiple cancer types. Precision targeting of mutated gene sets eradicated a large fraction of established tumors at both local and distant sites. This treatment modality led to alterations in the tumor microenvironment, marked by enhanced T cell infiltration and antitumor immune signatures. Multiplexed endogenous gene activation is a versatile and highly scalable strategy to elicit potent immune responses against cancer, distinct from all existing cancer therapies.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Terapia Genética/métodos , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Animales , Presentación de Antígeno/genética , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Terapia Combinada/métodos , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Células HEK293 , Humanos , Inyecciones Intralesiones , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Neoplasias/genética , Neoplasias/inmunología , Linfocitos T Citotóxicos/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
4.
PLoS Biol ; 21(6): e3002097, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310920

RESUMEN

Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.


Asunto(s)
COVID-19 , Internalización del Virus , Animales , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/genética , COVID-19/metabolismo , Dipeptidil Peptidasa 4 , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Quinasas DyrK
5.
PLoS Biol ; 20(10): e3001805, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36228039

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is mediated by the entry receptor angiotensin-converting enzyme 2 (ACE2). Although attachment factors and coreceptors facilitating entry are extensively studied, cellular entry factors inhibiting viral entry are largely unknown. Using a surfaceome CRISPR activation screen, we identified human LRRC15 as an inhibitory attachment factor for SARS-CoV-2 entry. LRRC15 directly binds to the receptor-binding domain (RBD) of spike protein with a moderate affinity and inhibits spike-mediated entry. Analysis of human lung single-cell RNA sequencing dataset reveals that expression of LRRC15 is primarily detected in fibroblasts and particularly enriched in pathological fibroblasts in COVID-19 patients. ACE2 and LRRC15 are not coexpressed in the same cell types in the lung. Strikingly, expression of LRRC15 in ACE2-negative cells blocks spike-mediated viral entry in ACE2+ cell in trans, suggesting a protective role of LRRC15 in a physiological context. Therefore, LRRC15 represents an inhibitory attachment factor for SARS-CoV-2 that regulates viral entry in trans.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/genética , Unión Proteica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
6.
PLoS Biol ; 19(3): e3001143, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730024

RESUMEN

There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.


Asunto(s)
Bronquios/patología , COVID-19/diagnóstico , Expresión Génica , SARS-CoV-2/aislamiento & purificación , Análisis de la Célula Individual/métodos , Adulto , Bronquios/virología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Células Cultivadas , Epitelio/patología , Epitelio/virología , Humanos , Inmunidad Innata , Estudios Longitudinales , SARS-CoV-2/genética , Transcriptoma , Tropismo Viral
7.
EMBO Rep ; 22(7): e51921, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34096150

RESUMEN

Epithelial tissues respond to a wide variety of environmental and genotoxic stresses. As an adaptive mechanism, cells can deviate from their natural paths to acquire new identities, both within and across lineages. Under extreme conditions, epithelial tissues can utilize "shape-shifting" mechanisms whereby they alter their form and function at a tissue-wide scale. Mounting evidence suggests that in order to acquire these alternate tissue identities, cells follow a core set of "tissue logic" principles based on developmental paradigms. Here, we review the terminology and the concepts that have been put forward to describe cell plasticity. We also provide insights into various cell intrinsic and extrinsic factors, including genetic mutations, inflammation, microbiota, and therapeutic agents that contribute to cell plasticity. Additionally, we discuss recent studies that have sought to decode the "syntax" of plasticity-i.e., the cellular and molecular principles through which cells acquire new identities in both homeostatic and malignant epithelial tissues-and how these processes can be manipulated for developing novel cancer therapeutics.


Asunto(s)
Plasticidad de la Célula , Neoplasias , Células Epiteliales , Homeostasis , Humanos , Inflamación , Neoplasias/genética
8.
Nat Methods ; 16(5): 405-408, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962622

RESUMEN

Systematic investigation of the genetic interactions that influence metastatic potential has been challenging. Here we developed massively parallel CRISPR-Cpf1/Cas12a crRNA array profiling (MCAP), an approach for combinatorial interrogation of double knockouts in vivo. We designed an MCAP library of 11,934 arrays targeting 325 pairwise combinations of genes implicated in metastasis. By assessing the metastatic potential of the double knockouts in mice, we unveiled a quantitative landscape of genetic interactions that drive metastasis.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Endonucleasas/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes/métodos , Metástasis de la Neoplasia/genética , Animales , Proteína 9 Asociada a CRISPR/genética , Línea Celular Tumoral , Ratones , Análisis de Secuencia de ARN
9.
J Virol ; 95(7)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33441348

RESUMEN

Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). As PGs play diverse biological roles in homeostasis and inflammatory responses, inhibiting PG production with NSAIDs could affect COVID-19 pathogenesis in multiple ways, including: (1) altering susceptibility to infection by modifying expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2; (2) regulating replication of SARS-CoV-2 in host cells; and (3) modulating the immune response to SARS-CoV-2. Here, we investigate these potential roles. We demonstrate that SARS-CoV-2 infection upregulates COX-2 in diverse human cell culture and mouse systems. However, suppression of COX-2 by two commonly used NSAIDs, ibuprofen and meloxicam, had no effect on ACE2 expression, viral entry, or viral replication. In contrast, in a mouse model of SARS-CoV-2 infection, NSAID treatment reduced production of pro-inflammatory cytokines and impaired the humoral immune response to SARS-CoV-2 as demonstrated by reduced neutralizing antibody titers. Our findings indicate that NSAID treatment may influence COVID-19 outcomes by dampening the inflammatory response and production of protective antibodies rather than modifying susceptibility to infection or viral replication.ImportancePublic health officials have raised concerns about the use of nonsteroidal anti-inflammatory drugs (NSAIDs) for treating symptoms of coronavirus disease 2019 (COVID-19). NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which are critical for the generation of prostaglandins - lipid molecules with diverse roles in homeostasis and inflammation. Inhibition of prostaglandin production by NSAIDs could therefore have multiple effects on COVID-19 pathogenesis. Here, we demonstrate that NSAID treatment reduced both the antibody and pro-inflammatory cytokine response to SARS-CoV-2 infection. The ability of NSAIDs to modulate the immune response to SARS-CoV-2 infection has important implications for COVID-19 pathogenesis in patients. Whether this occurs in humans and whether it is beneficial or detrimental to the host remains an important area of future investigation. This also raises the possibility that NSAIDs may alter the immune response to SARS-CoV-2 vaccination.

10.
medRxiv ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38633773

RESUMEN

Deep learning models for variant pathogenicity prediction can recapitulate expert-curated annotations, but their performance remains unexplored on actual disease phenotypes in a real-world setting. Here, we apply three state-of-the-art pathogenicity prediction models to classify hereditary breast cancer gene variants in the UK Biobank. Predicted pathogenic variants in BRCA1, BRCA2 and PALB2, but not ATM and CHEK2, were associated with increased breast cancer risk. We explored gene-specific score thresholds for variant pathogenicity, finding that they could improve model performance. However, when specifically tasked with classifying variants of uncertain significance, the deep learning models were generally of limited clinical utility.

11.
Nat Biotechnol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918616

RESUMEN

Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)-SB (Sleeping Beauty)-CRISPR (clustered regularly interspaced short palindromic repeats) screens in four solid tumor mouse models. In parallel, we characterized single-cell transcriptomic landscapes of TINK cells, which identified previously unexplored subpopulations of NK cells and differentially expressed TINK genes. As a convergent hit, CALHM2-knockout (KO) NK cells showed enhanced cytotoxicity and tumor infiltration in mouse primary NK cells and human chimeric antigen receptor (CAR)-NK cells. CALHM2 mRNA reversed the CALHM2-KO phenotype. CALHM2 KO in human primary NK cells enhanced their cytotoxicity, degranulation and cytokine production. Transcriptomics profiling revealed CALHM2-KO-altered genes and pathways in both baseline and stimulated conditions. In a solid tumor model resistant to unmodified CAR-NK cells, CALHM2-KO CAR-NK cells showed potent in vivo antitumor efficacy. These data identify endogenous genetic checkpoints that naturally limit NK cell function and demonstrate the use of CALHM2 KO for engineering enhanced NK cell-based immunotherapies.

12.
Cancer Cell ; 41(4): 651-652, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36931275

RESUMEN

Song and Chow demonstrate that while tumor-intrinsic mutations in the IFN-γ signaling pathway confer immune resistance across in vitro co-culture systems, such alterations associate with enhanced anti-tumor immunity in vivo and improved responsiveness to immune checkpoint blockade therapy in patients with cancer.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Mutación
13.
Cancer Discov ; 13(2): 312-331, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36301137

RESUMEN

Mismatch repair-deficient (MMRd) cancers have varied responses to immune-checkpoint blockade (ICB). We conducted a phase II clinical trial of the PD-1 inhibitor pembrolizumab in 24 patients with MMRd endometrial cancer (NCT02899793). Patients with mutational MMRd tumors (6 patients) had higher response rates and longer survival than those with epigenetic MMRd tumors (18 patients). Mutation burden was higher in tumors with mutational MMRd compared with epigenetic MMRd; however, within each category of MMRd, mutation burden was not correlated with ICB response. Pretreatment JAK1 mutations were not associated with primary resistance to pembrolizumab. Longitudinal single-cell RNA-seq of circulating immune cells revealed contrasting modes of antitumor immunity for mutational versus epigenetic MMRd cancers. Whereas effector CD8+ T cells correlated with regression of mutational MMRd tumors, activated CD16+ NK cells were associated with ICB-responsive epigenetic MMRd tumors. These data highlight the interplay between tumor-intrinsic and tumor-extrinsic factors that influence ICB response. SIGNIFICANCE: The molecular mechanism of MMRd is associated with response to anti-PD-1 immunotherapy in endometrial carcinoma. Tumors with epigenetic MMRd or mutational MMRd are correlated with NK cell or CD8+ T cell-driven immunity, respectively. Classifying tumors by the mechanism of MMRd may inform clinical decision-making regarding cancer immunotherapy. This article is highlighted in the In This Issue feature, p. 247.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Endometriales , Síndromes Neoplásicos Hereditarios , Femenino , Humanos , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Inmunoterapia , Reparación de la Incompatibilidad de ADN
14.
JID Innov ; 3(4): 100189, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37205304

RESUMEN

Acral dermatoses, including hyperkeratotic palmoplantar eczema (HPE), palmoplantar psoriasis (PP), and mycosis fungoides palmaris et plantaris (MFPP), can be challenging to diagnose clinically and histopathologically. In this setting, cytokine biomarkers may be able to help provide diagnostic clarity. Therefore, we evaluated IL-17A, IFN-γ, and IL-13 expression in PP, HPE, and MFPP and compared their expression profiles with nonacral sites. We used biopsy specimens from the Yale Dermatopathology database, selecting cases of HPE (n = 12), PP (n = 8), MFPP (n = 8), normal acral skin (n = 9), nonacral eczema (n = 10), and nonacral psoriasis (n = 10) with classic clinical and histopathologic features. IL17A mRNA expression by RNA in situ hybridization differentiated PP (median score 63.1 [interquartile range 9.4-104.1]) from HPE (0.8 [0-6.0]; P = 0.003), MFPP (0.6 [0-2.6]; P = 0.003), and normal acral skin (0 [0-0]; P < 0.001). Unexpectedly, both PP and HPE showed co-expression of IFNG and IL13 mRNA. In contrast, nonacral psoriasis and eczema showed divergent patterns of IFNG and IL13 mRNA expression. Taken together, we show that IL17A mRNA expression may be a useful biomarker of PP, and we further show that acral dermatoses exhibit distinct immunology compared to nonacral sites, with implications for clinical management.

15.
JNCI Cancer Spectr ; 7(3)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37202354

RESUMEN

Disparities in metastatic renal cell carcinoma (mRCC) outcomes persist in the era of oral anticancer agents (OAAs) and immunotherapies (IOs). We examined variation in the utilization of mRCC systemic therapies among US Medicare beneficiaries from 2015 to 2019. Logistic regression models evaluated the association between therapy receipt and demographic covariates including patient race, ethnicity, and sex. In total, 15 407 patients met study criteria. After multivariable adjustment, non-Hispanic Black race and ethnicity was associated with reduced IO (adjusted relative risk ratio [aRRR] = 0.76, 95% confidence interval [CI] = 0.61 to 0.95; P = .015) and OAA receipt (aRRR = 0.76, 95% CI = 0.64 to 0.90; P = .002) compared with non-Hispanic White race and ethnicity. Female sex was associated with reduced IO (aRRR = 0.73, 95% CI = 0.66 to 0.81; P < .001) and OAA receipt (aRRR = 0.74, 95% CI = 0.68 to 0.81; P < .001) compared with male sex. Thus, disparities by race, ethnicity, and sex were observed in mRCC systemic therapy utilization for Medicare beneficiaries from 2015 to 2019.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Masculino , Femenino , Anciano , Estados Unidos/epidemiología , Carcinoma de Células Renales/tratamiento farmacológico , Medicare , Neoplasias Renales/tratamiento farmacológico , Etnicidad , Blanco
16.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993337

RESUMEN

Natural killer (NK) cells are an innate immune cell type that serves at the first level of defense against pathogens and cancer. NK cells have clinical potential, however, multiple current limitations exist that naturally hinder the successful implementation of NK cell therapy against cancer, including their effector function, persistence, and tumor infiltration. To unbiasedly reveal the functional genetic landscape underlying critical NK cell characteristics against cancer, we perform perturbomics mapping of tumor infiltrating NK cells by joint in vivo AAV-CRISPR screens and single cell sequencing. We establish a strategy with AAV-SleepingBeauty(SB)- CRISPR screening leveraging a custom high-density sgRNA library targeting cell surface genes, and perform four independent in vivo tumor infiltration screens in mouse models of melanoma, breast cancer, pancreatic cancer, and glioblastoma. In parallel, we characterize single-cell transcriptomic landscapes of tumor-infiltrating NK cells, which identifies previously unexplored sub-populations of NK cells with distinct expression profiles, a shift from immature to mature NK (mNK) cells in the tumor microenvironment (TME), and decreased expression of mature marker genes in mNK cells. CALHM2, a calcium homeostasis modulator that emerges from both screen and single cell analyses, shows both in vitro and in vivo efficacy enhancement when perturbed in chimeric antigen receptor (CAR)-NK cells. Differential gene expression analysis reveals that CALHM2 knockout reshapes cytokine production, cell adhesion, and signaling pathways in CAR- NKs. These data directly and systematically map out endogenous factors that naturally limit NK cell function in the TME to offer a broad range of cellular genetic checkpoints as candidates for future engineering to enhance NK cell-based immunotherapies.

17.
bioRxiv ; 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36993364

RESUMEN

Chimeric antigen receptor (CAR) T cells are powerful therapeutics; however, their efficacy is often hindered by critical hurdles. Here, utilizing the endocytic feature of the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) cytoplasmic tail (CT), we reprogram CAR function and substantially enhance CAR-T efficacy in vivo . CAR-T cells with monomeric, duplex, or triplex CTLA-4 CTs (CCTs) fused to the C-terminus of CAR exhibit a progressive increase in cytotoxicity under repeated stimulation, accompanied by reduced activation and production of pro-inflammatory cytokines. Further characterization reveals that CARs with increasing CCT fusion show a progressively lower surface expression, regulated by their constant endocytosis, recycling and degradation under steady state. The molecular dynamics of reengineered CAR with CCT fusion results in reduced CAR-mediated trogocytosis, loss of tumor antigen, and improved CAR-T survival. CARs with either monomeric (CAR-1CCT) or duplex CCTs (CAR-2CCT) have superior anti-tumor efficacy in a relapsed leukemia model. Single-cell RNA sequencing and flow cytometry analysis reveal that CAR-2CCT cells retain a stronger central memory phenotype and exhibit increased persistence. These findings illuminate a unique strategy for engineering therapeutic T cells and improving CAR-T function through synthetic CCT fusion, which is orthogonal to other cell engineering techniques.

18.
Nat Biotechnol ; 41(9): 1239-1255, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36702900

RESUMEN

The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.


Asunto(s)
Proteínas Bacterianas , Edición Génica , Humanos , Proteínas Bacterianas/genética , Edición Génica/métodos , Linfocitos T CD4-Positivos/metabolismo , ARN , Sistemas CRISPR-Cas/genética
19.
bioRxiv ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36993642

RESUMEN

Cas9 transgenic animals have drastically accelerated the discovery of novel immune modulators. But due to its inability to process its own CRISPR RNAs (crRNAs), simultaneous multiplexed gene perturbations using Cas9 remains limited, especially by pseudoviral vectors. Cas12a/Cpf1, however, can process concatenated crRNA arrays for this purpose. Here, we created conditional and constitutive LbCas12a knock-in transgenic mice. With these mice, we demonstrated efficient multiplexed gene editing and surface protein knockdown within individual primary immune cells. We showed genome editing across multiple types of primary immune cells including CD4 and CD8 T cells, B cells, and bone-marrow derived dendritic cells. These transgenic animals, along with the accompanying viral vectors, together provide a versatile toolkit for a broad range of ex vivo and in vivo gene editing applications, including fundamental immunological discovery and immune gene engineering.

20.
JAMA Health Forum ; 3(5): e221229, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35977250

RESUMEN

Importance: Studies using data from before 2011 concluded that the cost of US cancer care is justified given improved outcomes compared with European countries. However, it is unclear whether contemporary US cancer care provides better value than that of other high-income countries. Objective: To assess whether cancer mortality rates in 2020 were lower in countries with higher cancer-related spending, and to estimate across countries the incremental cost per averted cancer death. Design Setting and Participants: Cross-sectional, national-level analysis of 22 high-income countries, assessing the association between cancer care expenditures and age-standardized population-level cancer mortality rates in 2020, with and without adjustment for smoking. In addition, US incremental costs per averted death compared with the other countries were calculated. This study was conducted from September 1, 2021, to March 31, 2022. Main Outcomes and Measures: Age-standardized population-level cancer mortality rates. Results: In this cross-sectional study of 22 countries, the median cancer mortality rate was 91.4 per 100 000 population (IQR, 84.2-101.6). The US cancer mortality rate was higher than that of 6 other countries (86.3 per 100 000). Median per capita spending in USD for cancer care was $296 (IQR, $222-$348), with the US spending more than any other country ($584). After adjusting for smoking, 9 countries had lower cancer care expenditures and lower mortality rates than the US. Of the remaining 12 countries, the US additionally spent more than $5 million per averted death relative to 4 countries, and between $1 and $5 million per averted death relative to 8 countries. Cancer care expenditures were not associated with cancer mortality rates, with or without adjustment for smoking (Pearson R = -0.05 [95% CI, -0.46 to 0.38]; P = .81; and R = -0.05 [95% CI, -0.46 to 0.38]; P = .82). Conclusions and Relevance: In this cross-sectional study of national cancer care expenditures and cancer mortality rates across 22 countries, although the cancer mortality rate in the US was lower than the median, the US spent twice as much on cancer care as the median country. Findings of this study suggest that the US expenditure on cancer care may not be commensurate with improved cancer outcomes.


Asunto(s)
Gastos en Salud , Neoplasias , Estudios Transversales , Países Desarrollados , Europa (Continente)/epidemiología , Renta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA