Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 20(3): 357-367, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33721271

RESUMEN

Hybrid organic-inorganic perovskite solar cells (PSCs) are promising new generations of solar cells, which is low in cost with high power conversion efficiency (PCE). However, PSCs suffer from structural defects generated from the under coordinated ions at the surface, which limits their photovoltaic performances. Herein we report, two ß-diketone Lewis base additives 2,4-pentanedione and 3-methyl-2,4-nonanedione within the chlorobenzene anti-solvent to passivate the surface defects generated from the under coordinated Pb2+ ions in CH3NH3PbI3 perovskite films. The incorporation of the two ß-diketone passivators could successfully enhance the open-circuit voltage of the PSCs by 52 mV and 17 mV for 3-methyl-2,4-nonanedione and 2,4-pentanedione, respectively, with improved PCE by 45% for 3-methyl-2,4-nonanedione compared to the pristine PSC. This enhancement in the photovoltaic performance of the PSCs can be attributed to passivation of the defects through the interaction between two carbonyl groups of the ß-diketone Lewis base additives and the under coordinated Pb2+ defects in the perovskite film, which improved the PSCs PCE and stability.

2.
Chem Rec ; 16(2): 614-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26816190

RESUMEN

Third-generation solar cells are understood to be the pathway to overcoming the issues and drawbacks of the existing solar cell technologies. Since the introduction of graphene in solar cells, it has been providing attractive properties for the next generation of solar cells. Currently, there are more theoretical predictions rather than practical recognitions in third-generation solar cells. Some of the potential of graphene has been explored in organic photovoltaics (OPVs) and dye-sensitized solar cells (DSSCs), but it has yet to be fully comprehended in the recent third-generation inorganic-organic hybrid perovskite solar cells. In this review, the diverse role of graphene in third-generation OPVs and DSSCs will be deliberated to provide an insight on the prospects and challenges of graphene in inorganic-organic hybrid perovskite solar cells.

3.
Adv Sci (Weinh) ; 9(33): e2203749, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36257820

RESUMEN

Because of its less toxicity and electronic structure analogous to that of lead, tin halide perovskite (THP) is currently one of the most favorable candidates as an active layer for optoelectronic and electric devices such as solar cells, photodiodes, and field-effect transistors (FETs). Promising photovoltaics and FETs performances have been recently demonstrated because of their desirable electrical and optical properties. Nevertheless, THP's easy oxidation from Sn2+ to Sn4+ , easy formation of tin vacancy, uncontrollable film morphology and crystallinity, and interface instability severely impede its widespread application. This review paper aims to provide a basic understanding of THP as a semiconductor by highlighting the physical structure, energy band structure, electrical properties, and doping mechanisms. Additionally, the key chemical instability issues of THPs are discussed, which are identified as the potential bottleneck for further device development. Based on the understanding of the THPs properties, the key recent progress of THP-based solar cells and FETs is briefly discussed. To conclude, current challenges and perspective opportunities are highlighted.

4.
ACS Appl Mater Interfaces ; 8(7): 4616-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26812212

RESUMEN

Dye-sensitized solar cells (DSSCs) based on a donor-acceptor-donor oligothienylene dye containing benzothiadiazole (T4BTD-A) were cosensitized with dyes containing cis-configured squaraine rings (HSQ3 and HSQ4). The cosensitized dyes showed incident monochromatic photon-to-current conversion efficiency (IPCE) greater than 70% in the 300-850 nm wavelength region. The individual overall conversion efficiencies of the sensitizers T4BTD-A, HSQ3, and HSQ4 were 6.4%, 4.8%, and 5.8%, respectively. Improved power conversion efficiencies of 7.0% and 7.7% were observed when T4BTD-A was cosensitized with HSQ3 and HSQ4, respectively, thanks to a significant increase in current density (JSC) for the cosensitized DSSCs. Intensity-modulated photovoltage spectroscopy results showed a longer lifetime for cosensitized T4BTD-A+HSQ3 and T4BTD-A+HSQ4 compared to that of HSQ3 and HSQ4, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA