Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38542524

RESUMEN

The emergence of SARS-CoV-2 mutations poses significant challenges to diagnostic tests, as these mutations can reduce the sensitivity of commonly used RT-PCR assays. Therefore, there is a need to design diagnostic assays with multiple targets to enhance sensitivity. In this study, we identified a novel diagnostic target, the nsp10 gene, using nanopore sequencing. Firstly, we determined the analytical sensitivity and specificity of our COVID-19-nsp10 assay. The COVID-19-nsp10 assay had a limit of detection of 74 copies/mL (95% confidence interval: 48-299 copies/mL) and did not show cross-reactivity with other respiratory viruses. Next, we determined the diagnostic performance of the COVID-19-nsp10 assay using 261 respiratory specimens, including 147 SARS-CoV-2-positive specimens belonging to the ancestral strain and Alpha, Beta, Gamma, Delta, Mu, Eta, Kappa, Theta and Omicron lineages. Using a LightMix E-gene RT-PCR assay as the reference method, the diagnostic sensitivity and specificity of the COVID-19-nsp10 assay were found to be 100%. The median Cp values for the LightMix E-gene RT-PCR and our COVID-19-nsp10 RT-PCR were 22.48 (range: 12.95-36.60) and 25.94 (range 16.37-36.87), respectively. The Cp values of the COVID-19-nsp10 RT-PCR assay correlated well with those of the LightMix E-gene RT-PCR assay (Spearman's ρ = 0.968; p < 0.0001). In conclusion, nsp10 is a suitable target for a SARS-CoV-2 RT-PCR assay.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Prueba de COVID-19 , Sensibilidad y Especificidad
2.
Clin Infect Dis ; 75(1): e44-e49, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35271728

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant BA.2 sublineage has increased rapidly in Europe and Asia since January 2022. Here, we report the epidemiological and genomic analysis of a large single-source BA.2 outbreak in a housing estate. METHODS: We analyzed the epidemiological information on a community outbreak of BA.2 (STY outbreak). We performed whole viral genome sequencing using the Oxford Nanopore MinION device. We calculated the doubling time of the outbreak within a housing estate. RESULTS: The STY outbreak involved a total of 768 individuals as of 5 February 2022, including 432 residents, visitors, or staff (56.3%) from a single housing estate (KC Estate). The outbreak at the KC Estate had a short doubling time of 1.28 days (95% confidence interval: .560-1.935). The outbreak was promptly controlled with the lockdown of 3 buildings within the housing estate. Whole-genome sequencing was performed for 133 patients in the STY outbreak, including 106 residents of the KC Estate. All 133 sequences from the STY outbreak belonged to the BA.2 sublineage, and phylogenetic analysis showed that these sequences cluster together. All individuals in the STY cluster had the unique mutation C12525T. CONCLUSIONS: Our study highlights the exceptionally high transmissibility of the Omicron variant BA.2 sublineage in Hong Kong, where stringent measures are implemented as part of the elimination strategy. Continual genomic surveillance is crucial in monitoring the emergence of epidemiologically important Omicron sublineages.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Brotes de Enfermedades , Hong Kong/epidemiología , Humanos , Filogenia , SARS-CoV-2/genética
3.
Clin Infect Dis ; 74(8): 1485-1488, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-34498683

RESUMEN

A false-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction result can lead to unnecessary public health measures. We report 2 individuals whose respiratory specimens were contaminated by an inactivated SARS-CoV-2 vaccine strain (CoronaVac), likely at vaccination premises. Incidentally, whole genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , COVID-19/prevención & control , Humanos , SARS-CoV-2/genética , Vacunación
4.
Clin Infect Dis ; 74(9): 1623-1630, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-34309648

RESUMEN

BACKGROUND: Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages with mutations at the spike protein receptor binding domain (RBD) have reduced susceptibility to antibody neutralization, and have been classified as variants of concern (VOCs) or variants of interest (VOIs). Here we systematically compared the neutralization susceptibility and RBD binding of different VOCs/VOIs, including B.1.617.1 (kappa variant) and P.3 (theta variant), which were first detected in India and the Philippines, respectively. METHODS: The neutralization susceptibility of the VOCs/VOIs (B.1.351, B.1.617.1, and P.3) and a non-VOC/VOI without RBD mutations (B.1.36.27) to convalescent sera from coronavirus disease 2019 (COVID-19) patients or BNT162b2 vaccinees was determined using a live virus microneutralization (MN) assay. Serum immunoglobulin G (IgG) binding to wild-type and mutant RBDs were determined using an enzyme immunoassay. RESULTS: The geometric mean neutralization titers (GMT) of B.1.351, P.3, and B.1.617.1 were significantly lower than that of B.1.36.27 for COVID-19 patients infected with non-VOCs/VOIs (3.4- to 5.7-fold lower) or individuals who have received 2 doses of BNT162b2 vaccine (4.4- to 7.3-fold lower). The GMT of B.1.351 or P.3 were lower than that of B.1.617.1. For the 4 patients infected with B.1.351 or B.1.617.1, the MN titer was highest for their respective lineage. RBD with E484K or E484Q mutation, either alone or in combination with other mutations, showed greatest reduction in serum IgG binding. CONCLUSIONS: P.3 and B.1.617.1 escape serum neutralization induced by natural infection or vaccine. Infection with 1 variant does not confer cross-protection for heterologous lineages. Immunogenicity testing for second generation COVID-19 vaccines should include multiple variant and "nonvariant" strains.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/terapia , Vacunas contra la COVID-19 , Humanos , Inmunización Pasiva , Inmunoglobulina G , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunación , Sueroterapia para COVID-19
5.
Clin Infect Dis ; 75(1): e822-e826, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34915551

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant, designated as a variant of concern by the World Health Organization, carries numerous spike mutations that are known to evade neutralizing antibodies elicited by coronavirus disease 2019 (COVID-19) vaccines. A deeper understanding of the susceptibility of omicron variant to vaccine-induced neutralizing antibodies is urgently needed for risk assessment. METHODS: Omicron variant strains HKU691 and HKU344-R346K were isolated from patients using TMPRSS2-overexpressing VeroE6 cells. Whole genome sequence was determined using nanopore sequencing. Neutralization susceptibility of ancestral lineage A virus and the omicron, delta and beta variants to sera from 25 BNT162b2 and 25 CoronaVac vaccine recipients was determined using a live virus microneutralization assay. RESULTS: The omicron variant strain HKU344-R346K has an additional spike R346K mutation, which is present in 8.5% of strains deposited in the GISAID database. Only 20% and 24% of BNT162b2 recipients had detectable neutralizing antibody against the omicron variant HKU691 and HKU344-R346K, respectively, whereas none of the CoronaVac recipients had detectable neutralizing antibody titer against either omicron isolate. For BNT162b2 recipients, the geometric mean neutralization antibody titers (GMTs) of the omicron variant isolates (5.43 and 6.42) were 35.7-39.9-fold lower than that of the ancestral virus (229.4), and the GMTs of both omicron variant isolates were significantly lower than those of the beta and delta variants. There was no significant difference in the GMTs between HKU691 and HKU344-R346K. CONCLUSIONS: Omicron variant escapes neutralizing antibodies elicited by BNT162b2 or CoronaVac. The additional R346K mutation did not affect the neutralization susceptibility. Our data suggest that the omicron variant may be associated with lower COVID-19 vaccine effectiveness.


Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Pruebas de Neutralización , SARS-CoV-2/genética
6.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35234870

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Brotes de Enfermedades , Femenino , Hong Kong/epidemiología , Humanos , Mamíferos , ARN Viral/genética , SARS-CoV-2/genética
7.
Clin Infect Dis ; 73(6): e1356-e1364, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33851214

RESUMEN

BACKGROUND: Nosocomial outbreaks with superspreading of coronavirus disease 2019 due to a possible airborne transmission have not been reported. METHODS: Epidemiological analysis, environmental samplings, and whole-genome sequencing (WGS) were performed for a hospital outbreak. RESULTS: A superspreading event that involved 12 patients and 9 healthcare workers (HCWs) occurred within 9 days in 3 of 6 cubicles at an old-fashioned general ward with no air exhaust built within the cubicles. The environmental contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was significantly higher in air grilles (>2 m from patients' heads and not within reach) than on high-touch clinical surfaces (36.4%, 8 of 22 vs 3.4%, 1 of 29, P = .003). Six (66.7%) of 9 contaminated air exhaust grilles were located outside patient cubicles. The clinical attack rate of patients was significantly higher than of HCWs (15.4%, 12 of 78 exposed patients vs 4.6%, 9 of 195 exposed HCWs, P = .005). Moreover, the clinical attack rate of ward-based HCWs was significantly higher than of nonward-based HCWs (8.1%, 7 of 68 vs 1.8%, 2 of 109, P = .045). The episodes (mean ±â€…standard deviation) of patient-care duty assignment in the cubicles was significantly higher among infected ward-based HCWs than among noninfected ward-based HCWs (6.0 ±â€…2.4 vs 3.0 ±â€…2.9, P = .012) during the outbreak period. The outbreak strains belong to SARS-CoV-2 lineage B.1.36.27 (GISAID clade GH) with the unique S-T470N mutation on WGS. CONCLUSIONS: This nosocomial point source superspreading event due to possible airborne transmission demonstrates the need for stringent SARS-CoV-2 screening at admission to healthcare facilities and better architectural design of ventilation systems to prevent such outbreaks. Portable high-efficiency particulate filters were installed in each cubicle to improve ventilation before resumption of clinical service.


Asunto(s)
COVID-19 , Infección Hospitalaria , Infección Hospitalaria/epidemiología , Brotes de Enfermedades , Personal de Salud , Hospitales , Humanos , SARS-CoV-2
8.
Clin Infect Dis ; 73(9): e2946-e2951, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32840608

RESUMEN

BACKGROUND: Waning immunity occurs in patients who have recovered from Coronavirus Disease 2019 (COVID-19). However, it remains unclear whether true re-infection occurs. METHODS: Whole genome sequencing was performed directly on respiratory specimens collected during 2 episodes of COVID-19 in a patient. Comparative genome analysis was conducted to differentiate re-infection from persistent viral shedding. Laboratory results, including RT-PCR Ct values and serum Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) IgG, were analyzed. RESULTS: The second episode of asymptomatic infection occurred 142 days after the first symptomatic episode in an apparently immunocompetent patient. During the second episode, there was evidence of acute infection including elevated C-reactive protein and SARS-CoV-2 IgG seroconversion. Viral genomes from first and second episodes belong to different clades/lineages. The virus genome from the first episode contained a a stop codon at position 64 of ORF8, leading to a truncation of 58 amino acids. Another 23 nucleotide and 13 amino acid differences located in 9 different proteins, including positions of B and T cell epitopes, were found between viruses from the first and second episodes. Compared to viral genomes in GISAID, the first virus genome was phylogenetically closely related to strains collected in March/April 2020, while the second virus genome was closely related to strains collected in July/August 2020. CONCLUSIONS: Epidemiological, clinical, serological, and genomic analyses confirmed that the patient had re-infection instead of persistent viral shedding from first infection. Our results suggest SARS-CoV-2 may continue to circulate among humans despite herd immunity due to natural infection. Further studies of patients with re-infection will shed light on protective immunological correlates for guiding vaccine design.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Genoma Viral , Humanos , Reinfección , Secuenciación Completa del Genoma
9.
Clin Infect Dis ; 73(1): 137-142, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32756996

RESUMEN

After 2 months of relative quiescence, a large coronavirus disease 2019 outbreak occurred in Hong Kong in July 2020 after gradual relaxation of social distancing policy. Unique severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) phylogenetic clusters have been identified among locally acquired cases, with most genomes belonging to cluster HK1, which is phylogenetically related to SARS-CoV-2 reported overseas.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brotes de Enfermedades , Hong Kong , Humanos , Filogenia
10.
Lancet ; 395(10238): 1695-1704, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32401715

RESUMEN

BACKGROUND: Effective antiviral therapy is important for tackling the coronavirus disease 2019 (COVID-19) pandemic. We assessed the efficacy and safety of combined interferon beta-1b, lopinavir-ritonavir, and ribavirin for treating patients with COVID-19. METHODS: This was a multicentre, prospective, open-label, randomised, phase 2 trial in adults with COVID-19 who were admitted to six hospitals in Hong Kong. Patients were randomly assigned (2:1) to a 14-day combination of lopinavir 400 mg and ritonavir 100 mg every 12 h, ribavirin 400 mg every 12 h, and three doses of 8 million international units of interferon beta-1b on alternate days (combination group) or to 14 days of lopinavir 400 mg and ritonavir 100 mg every 12 h (control group). The primary endpoint was the time to providing a nasopharyngeal swab negative for severe acute respiratory syndrome coronavirus 2 RT-PCR, and was done in the intention-to-treat population. The study is registered with ClinicalTrials.gov, NCT04276688. FINDINGS: Between Feb 10 and March 20, 2020, 127 patients were recruited; 86 were randomly assigned to the combination group and 41 were assigned to the control group. The median number of days from symptom onset to start of study treatment was 5 days (IQR 3-7). The combination group had a significantly shorter median time from start of study treatment to negative nasopharyngeal swab (7 days [IQR 5-11]) than the control group (12 days [8-15]; hazard ratio 4·37 [95% CI 1·86-10·24], p=0·0010). Adverse events included self-limited nausea and diarrhoea with no difference between the two groups. One patient in the control group discontinued lopinavir-ritonavir because of biochemical hepatitis. No patients died during the study. INTERPRETATION: Early triple antiviral therapy was safe and superior to lopinavir-ritonavir alone in alleviating symptoms and shortening the duration of viral shedding and hospital stay in patients with mild to moderate COVID-19. Future clinical study of a double antiviral therapy with interferon beta-1b as a backbone is warranted. FUNDING: The Shaw-Foundation, Richard and Carol Yu, May Tam Mak Mei Yin, and Sanming Project of Medicine.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Interferon beta-1b/uso terapéutico , Lopinavir/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Ribavirina/uso terapéutico , Ritonavir/uso terapéutico , Adulto , Betacoronavirus , COVID-19 , Combinación de Medicamentos , Quimioterapia Combinada , Femenino , Hong Kong , Hospitalización , Humanos , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
11.
J Med Virol ; 92(11): 2725-2734, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32501535

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the coronavirus disease 2019 (COVID-19) pandemic. Accurate detection of SARS-CoV-2 using molecular assays is critical for patient management and the control of the COVID-19 pandemic. However, there is an increasing number of SARS-CoV-2 viruses with mutations at the primer or probe binding sites, and these mutations may affect the sensitivity of currently available real-time reverse transcription-polymerase chain reaction (RT-PCR) assays targeting the nucleocapsid (N), envelope (E), and open reading frame 1a or 1b genes. Using sequence-independent single-primer amplification and nanopore whole-genome sequencing, we have found that the nonstructural protein 1 (nsp1) gene, located at the 5' end of the SARS-CoV-2 genome, was highly expressed in the nasopharyngeal or saliva specimens of 9 COVID-19 patients of different clinical severity. Based on this finding, we have developed a novel nsp1 real-time RT-PCR assay. The primers and probes are highly specific for SARS-CoV-2. Validation with 101 clinical specimens showed that our nsp1 RT-PCR assay has a sensitivity of 93.1% (95% confidence interval [CI]: 86.2%-97.2%), which was similar to those of N and E gene RT-PCR assays. The diagnostic specificity was 100% (95% CI: 92.9%-100%). The addition of nsp1 for multitarget detection of SARS-CoV-2 can avoid false-negative results due to mutations at the primers/probes binding sites of currently available RT-PCR assays.


Asunto(s)
COVID-19/diagnóstico , Secuenciación de Nanoporos/métodos , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , Secuenciación Completa del Genoma/métodos , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Nasofaringe/virología , Sistemas de Lectura Abierta , ARN Viral/genética , Saliva/virología , Sensibilidad y Especificidad
12.
iScience ; 27(5): 109706, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38660398

RESUMEN

SARS-CoV-2 Omicron variant has evolved into sublineages. Here, we compared the neutralization susceptibility and viral fitness of EG.5.1 and XBB.1.9.1. Serum neutralization antibody titer against EG.5.1 was 1.71-fold lower than that for XBB.1.9.1. However, there was no significant difference in virus replication between EG.5.1 and XBB.1.9.1 in human nasal organoids and TMPRSS2/ACE2 over-expressing A549 cells. No significant difference was observed in competitive fitness and cytokine/chemokine response between EG.5.1 and XBB.1.9.1. Both EG.5.1 and XBB.1.9.1 replicated more robustly in the nasal organoid from a younger adult than that from an older adult. Our findings suggest that enhanced immune escape contributes to the dominance of EG.5.1 over earlier sublineages. The combination of population serum susceptibility testing and viral fitness evaluation with nasal organoids may hold promise in risk assessment of upcoming variants. Utilization of serum specimens and nasal organoid derived from older adults provides a targeted risk assessment for this vulnerable population.

13.
Sci Rep ; 13(1): 19932, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968273

RESUMEN

Chronic kidney disease (CKD) patients are at higher risk of severe COVID-19. Humoral and cellular immunity from prior infection or vaccination are important for protection, but the neutralizing antibody (nAb) response against SARS-CoV-2 variants is impaired. We investigated the variant-specific nAb and T cell immunity among CKD patients. Adult CKD patients were recruited between August and October 2022. nAb against the SARS-CoV-2 (ancestral strains and four Omicron sublineages) and T cell response were measured using the live virus neutralization assay and interferon-gamma release assay (IGRA). The correlation between nAb/T-cell response and subsequent infection after recruitment were also determined. Among the 88 recruited patients, 95.5% had prior infection or had completed the primary vaccine series. However, only 77.3% had detectable nAb against at least one SARS-CoV-2 strains, 59.1% tested positive in IGRA, and 52.3% had detectable nAb and tested positive in the IGRA. The nAb geometic mean titers (GMTs) against XBB.1, BA.5 and BA.2.3.20 were significantly lower than those against BA.2 and ancestral strain. Prior SARS-CoV-2 infection was associated with elevated nAb and T cell response. More kidney transplant recipients (KTRs) showed absent nAb and T cell response (36.8% vs. 10.1%), despite a higher prevalence of vaccine booster in this population (94.7% vs. 50.7%). Lower levels of nAb titer and T cell response were significantly associated with subsequent infection. A considerable proportion of CKD patients, especially KTRs, showed absence of humoral and cellular protective immunity against SARS-CoV-2. Strategies to improve immunogenicity in this population are urgently needed.


Asunto(s)
COVID-19 , Insuficiencia Renal Crónica , Vacunas , Adulto , Humanos , SARS-CoV-2 , Inmunidad Celular , Anticuerpos Neutralizantes , Vacunación , Anticuerpos Antivirales , Inmunidad Humoral
14.
Microbiol Spectr ; 10(6): e0196222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36445095

RESUMEN

Accurate and simple diagnostic tests for coronavirus disease 2019 (COVID-19) are essential components of the pandemic response. In this study, we evaluated a one-tube reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay coupled with clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-mediated endpoint detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in clinical samples. RT-LAMP-CRISPR is fast and affordable, does not require bulky thermocyclers, and minimizes carryover contamination risk. Results can be read either visually or with a fluorometer. RT-LAMP-CRISPR assays using primers targeting a highly expressed nsp8 gene and previously described nucleocapsid (N) gene primers were designed. The analytical characteristics and diagnostic performance of RT-LAMP-CRISPR assays were compared to those of a commercial real-time RT-PCR E gene assay. The limits of detection (LODs) of the nsp8 and N RT-LAMP-CRISPR assays were 750 and 2,000 copies/mL, which were higher than that of the commercial real-time RT-PCR assay (31.3 copies/mL). Despite the higher LOD, RT-LAMP-CRISPR assays showed diagnostic sensitivity and specificity of 98.6% and 100%, respectively, equivalent to those of the real-time RT-PCR assay (P = 0.5). The median fluorescence reading from the nsp8 assay (378.3 raw fluorescence unit [RFU] [range, 215.6 to 592.6]) was significantly higher than that of the N gene assay (342.0 RFU [range, 143.0 to 576.6]) (P < 0.0001). In conclusion, we demonstrate that RT-LAMP-CRISPR assays using primers rationally designed from highly expressed gene targets are highly sensitive, specific, and easy to perform. Such assays are a valuable asset in resource-limited settings. IMPORTANCE Accurate tests for the diagnosis of SARS-CoV-2, the virus causing coronavirus disease 2019 (COVID-19), are important for timely treatment and infection control decisions. Conventional tests such as real-time reverse transcription-PCR (RT-PCR) require specialized equipment and are expensive. On the other hand, rapid antigen tests suffer from a lack of sensitivity. In this study, we describe a novel assay format for the diagnosis of COVID-19 that is based on principles of loop-mediated isothermal amplification (LAMP) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas chemistry. A major advantage of this assay format is that it does not require expensive equipment to perform, and results can be read visually. This method proved to be fast, easy to perform, and inexpensive. The test compared well against an RT-PCR assay in terms of the ability to detect SARS-CoV-2 RNA in clinical samples. No false-positive test results were observed. The new assay format is ideal for SARS-CoV-2 diagnosis in resource-limited settings.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Prueba de COVID-19 , ARN Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Cartilla de ADN
15.
Emerg Microbes Infect ; 11(1): 277-283, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34951565

RESUMEN

The novel SARS-CoV-2 Omicron variant (B.1.1.529), first found in early November 2021, has sparked considerable global concern and it has >50 mutations, many of which are known to affect transmissibility or cause immune escape. In this study, we sought to investigate the virological characteristics of the Omicron variant and compared it with the Delta variant which has dominated the world since mid-2021. Omicron variant replicated more slowly than the Delta variant in transmembrane serine protease 2 (TMPRSS2)-overexpressing VeroE6 (VeroE6/TMPRSS2) cells. Notably, the Delta variant replicated well in Calu3 cell line which has robust TMPRSS2 expression, while the Omicron variant replicated poorly in this cell line. Competition assay showed that Delta variant outcompeted Omicron variant in VeroE6/TMPRSS2 and Calu3 cells. To confirm the difference in entry pathway between the Omicron and Delta variants, we assessed the antiviral effect of bafilomycin A1, chloroquine (inhibiting endocytic pathway), and camostat (inhibiting TMPRSS2 pathway). Camostat potently inhibited the Delta variant but not the Omicron variant, while bafilomycin A1 and chloroquine could inhibit both Omicron and Delta variants. Moreover, the Omicron variant also showed weaker cell-cell fusion activity when compared with Delta variant in VeroE6/TMPRSS2 cells. Collectively, our results suggest that Omicron variant infection is not enhanced by TMPRSS2 but is largely mediated via the endocytic pathway. The difference in entry pathway between Omicron and Delta variants may have an implication on the clinical manifestations or disease severity.


Asunto(s)
COVID-19/virología , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Internalización del Virus , Replicación Viral , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Chlorocebus aethiops , Cloroquina/farmacología , Endocitosis/efectos de los fármacos , Ésteres/farmacología , Guanidinas/farmacología , Humanos , Evasión Inmune , Neoplasias Pulmonares/patología , Macrólidos/farmacología , Proteínas Recombinantes/metabolismo , SARS-CoV-2/genética , Células Vero , Cultivo de Virus , Internalización del Virus/efectos de los fármacos , Secuenciación Completa del Genoma
16.
Nat Commun ; 13(1): 3618, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750868

RESUMEN

Monitoring population protective immunity against SARS-CoV-2 variants is critical for risk assessment. We hypothesize that Hong Kong's explosive Omicron BA.2 outbreak in early 2022 could be explained by low herd immunity. Our seroprevalence study using sera collected from January to December 2021 shows a very low prevalence of neutralizing antibodies (NAb) against ancestral virus among older adults. The age group-specific prevalence of NAb generally correlates with the vaccination uptake rate, but older adults have a much lower NAb seropositive rate than vaccination uptake rate. For all age groups, the seroprevalence of NAb against Omicron variant is much lower than that against the ancestral virus. Our study suggests that this BA.2 outbreak and the exceptionally high case-fatality rate in the ≥80 year-old age group (9.2%) could be attributed to the lack of protective immunity in the population, especially among the vulnerable older adults, and that ongoing sero-surveillance is essential.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/epidemiología , Brotes de Enfermedades , Hong Kong/epidemiología , Humanos , Estudios Seroepidemiológicos
17.
J Hazard Mater ; 430: 128504, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739650

RESUMEN

Airborne transmission of SARS-CoV-2 has been increasingly recognized in the outbreak of COVID-19, especially with the Omicron variant. We investigated an outbreak due to Omicron variant in a restaurant. Besides epidemiological and phylogenetic analyses, the secondary attack rates of customers of restaurant-related COVID-19 outbreak before (Outbreak R1) and after enhancement of indoor air dilution (Outbreak R2) were compared. On 27th December 2021, an index case stayed in restaurant R2 for 98 min. Except for 1 sitting in the same table, six other secondary cases sat in 3 corners at 3 different zones, which were served by different staff. The median exposure time was 34 min (range: 19-98 min). All 7 secondary cases were phylogenetically related to the index. Smoke test demonstrated that the airflow direction may explain the distribution of secondary cases. Compared with an earlier COVID-19 outbreak in another restaurant R1 (19th February 2021), which occurred prior to the mandatory enhancement of indoor air dilution, the secondary attack rate among customers in R2 was significantly lower than that in R1 (3.4%, 7/207 vs 28.9%, 22/76, p<0.001). Enhancement of indoor air dilution through ventilation and installation of air purifier could minimize the risk of SARS-CoV-2 transmission in the restaurants.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , COVID-19/epidemiología , Brotes de Enfermedades , Humanos , Filogenia , Restaurantes , SARS-CoV-2/genética
18.
Emerg Microbes Infect ; 11(1): 689-698, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35135441

RESUMEN

During the investigation of a pet shop outbreak of severe acute respiratory coronavirus 2 (SARS-CoV-2) with probable hamster-to-human transmission, the environmental and hamster samples in epidemiologically linked pet shops were found positive for SARS-CoV-2 Delta variant AY.127 strains which are phylogenetically closely related to patients and reported European strains. This interspecies' spill-over has triggered transmission in 58 patients epidemiologically linked to three pet shops. Incidentally, three dwarf hamsters imported from the Netherlands and centralized in a warehouse distributing animals to pet shops were positive for SARS-CoV-2 spike variant phylogenetically related to European B.1.258 strains from March 2020. This B.1.258 strain almost disappeared in July 2021. While no hamster-to-human transmission of B.1.258-like strain was found in this outbreak, molecular docking showed that its spike receptor-binding domain (RBD) has a similar binding energy to human ACE2 compared to that of Delta variant AY.127. Therefore, the potential of this B.1.258-related spike variant for interspecies jumping cannot be ignored. The co-circulation of B.1.258-related spike variants with Delta AY.127, which originated in Europe and was not previously found in Hong Kong, suggested that hamsters in our wholesale warehouse and retail pet shops more likely have acquired these viruses in the Netherlands or stopovers during delivery by aviation than locally. The risk of human-to-hamster reverse zoonosis by multiple SARS-CoV-2 variants leading to further adaptive spike mutations with subsequent transmission back to humans cannot be underestimated as an outbreak source of COVID-19. Testing imported pet animals susceptible to SARS-CoV-2 is warranted to prevent future outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Hong Kong , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
19.
Viruses ; 14(8)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36016336

RESUMEN

Formulating termination of isolation (de-isolation) policies requires up-to-date knowledge about viral shedding dynamics. However, current de-isolation policies are largely based on viral load data obtained before the emergence of Omicron variant. In this retrospective cohort study involving adult patients hospitalised for COVID-19 between January and February 2022, we sought to determine SARS-CoV-2 viral shedding kinetics and to investigate the risk factors associated with slow viral decline during the 2022 Omicron wave. A total of 104 patients were included. The viral load was highest (Ct value was lowest) on days 1 post-symptom-onset (PSO) and gradually declined. Older age, hypertension, hyperlipidaemia and chronic kidney disease were associated with slow viral decline in the univariate analysis on both day 7 and day 10 PSO, while incomplete or no vaccination was associated with slow viral decline on day 7 PSO only. However, older age was the only risk factor that remained statistically significant in the multivariate analysis. In conclusion, older age is an independent risk factor associated with slow viral decline in this study conducted during the Omicron-dominant 2022 COVID-19 wave. Transmission-based precaution guidelines should take age into consideration when determining the timing of de-isolation.


Asunto(s)
COVID-19 , Carga Viral , Esparcimiento de Virus , Adulto , Anciano , COVID-19/virología , Humanos , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2
20.
Science ; 377(6604): 428-433, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35737809

RESUMEN

The in vivo pathogenicity, transmissibility, and fitness of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant are not well understood. We compared these virological attributes of this new variant of concern (VOC) with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine and chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible through contact transmission. In noncontact transmission studies Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure, but this scenario changed once immune selection pressure with neutralizing antibodies-active against Delta but poorly active against Omicron-was introduced. Next-generation vaccines and antivirals effective against this new VOC are therefore urgently needed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , COVID-19/transmisión , Modelos Animales de Enfermedad , Mesocricetus , SARS-CoV-2/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA