Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Helicobacter ; 29(1): e13032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38009269

RESUMEN

BACKGROUND: Some gastrointestinal disorders may be associated with Helicobacter pylori infection, which not only affect maternal health, but may also lead to adverse pregnancy outcomes. We aim to explore the association between H. pylori and gastrointestinal disorders in pregnant women. MATERIALS AND METHODS: In total, 503 patients were retrospectively analyzed and divided into the H. pylori-uninfected group, the H. pylori-infected group, or the H. pylori-eradicated group. We analyzed the influence of H. pylori on gastrointestinal diseases during pregnancy among the groups, as well as the severity, symptoms, laboratory tests of the H. pylori-related diseases. RESULTS: Pregnant women with H. pylori infection had higher risk of nausea and vomiting of pregnancy (NVP) (p < 0.001), severe NVP(p = 0.012), hyperemesis gravidarum (p = 0.027), hematemesis (p = 0.018), hyponatremia (p = 0.033), as well as functional dyspepsia symptoms including epigastric pain (p = 0.004), bloating (p = 0.024), and feeling full quickly in a meal (p = 0.031) compared with those without H. pylori infection. While the prevalence of NVP (p = 0.024), severe NVP (p = 0.009), epigastric pain (p = 0.037), and bloating (p = 0.032) were lower in H. pylori-eradicated pregnant women than in H. pylori-infected women. In addition, pregnant women with H. pylori infection had higher risk of spontaneous preterm birth than whom without H. pylori infection (p = 0.033). CONCLUSIONS: Helicobacter pylori infection was associated with higher risks of NVP, severe NVP, hyperemesis gravidarum, functional dyspepsia, and spontaneous preterm birth in pregnant women.


Asunto(s)
Dispepsia , Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Hiperemesis Gravídica , Complicaciones Infecciosas del Embarazo , Nacimiento Prematuro , Embarazo , Femenino , Recién Nacido , Humanos , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/epidemiología , Infecciones por Helicobacter/diagnóstico , Complicaciones Infecciosas del Embarazo/epidemiología , Hiperemesis Gravídica/complicaciones , Hiperemesis Gravídica/epidemiología , Estudios Retrospectivos , Dispepsia/epidemiología , Dispepsia/complicaciones , Gastritis/complicaciones , Dolor/complicaciones
2.
Molecules ; 28(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298979

RESUMEN

Blumea balsamifera (L.) DC., a perennial herb in the Asteraceae family native to China and Southeast Asia, has a notable history of medicinal use due to its pharmacological properties. Using UPLC-Q-Orbitrap HRMS techniques, we systematically investigated the chemical constituents of this plant. A total of 31 constituents were identified, of which 14 were flavonoid compounds. Significantly, 18 of these compounds were identified in B. balsamifera for the first time. Furthermore, the mass spectrometry fragmentation patterns of significant chemical constituents identified in B. balsamifera were analyzed, providing important insights into their structural characteristics. The in vitro antioxidative potential of the methanol extract of B. balsamifera was assessed using DPPH and ABTS free-radical-scavenging assays, total antioxidative capacity, and reducing power. The antioxidative activity exhibited a direct correlation with the mass concentration of the extract, with IC50 values of 105.1 ± 0.503 µg/mL and 12.49 ± 0.341 µg/mL for DPPH and ABTS, respectively. For total antioxidant capacity, the absorbance was 0.454 ± 0.009 at 400 µg/mL. In addition, the reducing power was 1.099 ± 0.03 at 2000 µg/mL. This study affirms that UPLC-Q-Orbitrap HRMS can effectively discern the chemical constituents in B. balsamifera, primarily its flavonoid compounds, and substantiates its antioxidative properties. This underscores its potential utility as a natural antioxidant in the food, pharmaceutical, and cosmetics sectors. This research provides a valuable theoretical basis and reference value for the comprehensive development and utilization of B. balsamifera and expands our understanding of this medicinally valuable plant.


Asunto(s)
Antioxidantes , Asteraceae , Antioxidantes/farmacología , Antioxidantes/química , Espectrometría de Masas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Asteraceae/química , Flavonoides/química
3.
Biomacromolecules ; 22(3): 1297-1304, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33577294

RESUMEN

Noncovalent cross-linked hydrogels with promising mechanical properties are on demand for applications in tissue engineering, flexible electronics, and actuators. However, integrating excellent mechanical properties with facile preparation for the design of hydrogen bond cross-linked hydrogels is still challenging. In this work, an advanced hydrogel was prepared from acrylamide and N-acryloyl phenylalanine by one-pot free-radical copolymerization. Owing to hydrophobicity-assisted multiple hydrogen bonding interactions among phenylalanine derivatives, the hydrogels exhibited fascinating mechanical behaviors: tensile strength of 0.35 MPa, elongation at break of 2100%, tearing energy of 1134 J/m2, and compression strength of 3.56 MPa. The hydrogels also showed robust elasticity and fatigue resistance, and the compression strength did not show any decline, even after 100 successive cycles, as well as promising self-recovery property. In addition, the cytotoxicity test in vitro proved that the hydrogel showed good biocompatibility with normal human liver cells (LO2 cells). The excellent stretchability, robust elasticity, high toughness, fatigue resistance, and biocompatibility of the hydrogel demonstrated its vast potential in the biomedical field and flexible electronic devices.


Asunto(s)
Hidrogeles , Fenilalanina , Humanos , Enlace de Hidrógeno , Resistencia a la Tracción , Ingeniería de Tejidos
4.
Surg Endosc ; 35(10): 5665-5674, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33420599

RESUMEN

BACKGROUND: The aim of this study was to evaluate the feasibility, safety, and efficacy of magnetic anchoring and guidance-assisted endoscopic irreversible electroporation (MAG-IRE) for gastric mucosal ablation. METHODS: A catheter-based, donut-like, and MAG-assisted electrode was developed. MAG-IRE for gastric mucosal ablation was performed in eight beagle canines. The parameters of one set of IRE was 500 V voltage, 100 µs pulse duration, and 99 pulses. The MAG time, operation time, success rate, and adverse events were measured. Endoscopic examination was performed from 30 min to 28 days post-IRE. Full-thickness gastric tissue was harvested by wedge biopsy for histopathological analysis. RESULTS: 30 (93.75%) of the 32 lesions were successfully ablated by MAG-IRE. The median MAG time was 300 s (IQR 120-422.5 s), and the median operation time was 491.5 s (IQR 358.3-632.5 s). No adverse events occurred. Ulceration was observed, starting from 3 days post-IRE. The mucosa healed 14 to 28 days post-IRE. Hematoxylin-Eosin (H&E) staining showed inflammatory infiltration, edema, and congestion in the ablated mucosa. Masson's Trichrome staining showed that the gastric wall and blood vessels in the ablation area were intact. TUNEL assay showed diffuse positive cells in ablated mucosa as early as 30 min post-IRE. CONCLUSIONS: MAG-IRE for gastric mucosal ablation is feasible, safe, and effective. It can be a potential therapeutic option for minimally invasive treatment of gastric neoplasm.


Asunto(s)
Técnicas de Ablación , Electroporación , Animales , Perros , Endoscopía , Mucosa Gástrica/cirugía , Fenómenos Magnéticos
5.
Angew Chem Int Ed Engl ; 60(12): 6744-6751, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33289262

RESUMEN

Chiral framework materials have been developed for many applications including chiral recognition, chiral separation, asymmetric catalysis, and chiroptical materials. Herein, we report that an achiral cucurbit[8]uril-based supramolecular organic framework (SOF-1) with the dynamic rotational conformation of tetraphenylethene units can exhibit adaptive chirality to produce M-SOF-1 or P-SOF-1 with mirror-image circular dichroism (CD) with gabs ≈±10-4 and circularly polarized luminescence (CPL) with glum ≈±10-4 induced by L-/D-phenylalanine in water, respectively. The chirality induction in CD (gabs ≈-10-4 ) and CPL (glum ≈-10-4 ) of P-SOF-1 from achiral SOF-1 can be presented by using a small amount of adenosine-5'-triphosphate disodium (ATP) or adenosine-5'-diphosphate disodium (ADP) (only 0.4 equiv) in water. Furthermore, the adaptive chirality of SOF-1 can be used to determine dipeptide sequences (e.g., Phe-Ala and Ala-Phe) and distinguish polypeptides/proteins (e.g., somatostatin and human insulin) with characteristic CD spectra. Therefore, achiral SOF-1 as an ideal chiroptical platform with adaptive chirality may be applied to determine the enantiopurity of amino acids (e.g., L-/D-phenylalanine), develop aqueous CPL materials, and distinguish biological chiral macromolecules (e.g., peptides/proteins) via chirality induction in water.

6.
Chemistry ; 26(57): 13031-13038, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-32428362

RESUMEN

Theranostic agents, taking the advantages of both imaging and therapeutic functions, are anticipated to be key components in the development of personalized medicine in which the therapeutic response can be real-time monitored. Herein, three metallacycles with pendent adamantane groups are prepared by coordination-driven self-assembly of PtII ligands with anticancer activities and tetraphenylethylene derivatives with emission. ß-Cyclodextrin, which shows good host-guest interactions with adamantane moieties, was added to form amphiphilic supramolecular nanoparticles with the aim to enhance the aqueous solubilities and bioactivities of these metallacycles. Moreover, when rhodamine-modified ß-cyclodextrin was used as the carrier, the release of the metallacycles from the nanoparticles could be monitored in situ through the fluorescence changes owing to the efficient fluorescence resonance energy transfer from the metallacycles to rhodamine-modified ß-cyclodextrin. In vitro and in vivo studies showed that these nanoparticles not only served as cell imaging contrast agents but also displayed improved anticancer activities, allowing them to serve as potential candidates for cancer theranostics. This study provides a simple and efficient method to prepare theranostic agents by hierarchical supramolecular self-assembly, which will pave the way for image-guided cancer therapy, targeted cancer therapy, and related biomedical fields.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Rodaminas , beta-Ciclodextrinas
7.
Surg Endosc ; 34(2): 580-589, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31011863

RESUMEN

BACKGROUND: Irreversible electroporation (IRE) is an emerging tissue ablation technique, which is safe for sites where thermal-basis techniques are not suitable. The aim of this study is to evaluate the safety and efficacy of magnetic anchoring electrode (MAE)-assisted IRE for normal gastric tissue ablation in a rabbit model. METHODS: IRE (500 V, 100 µs, 99 pulses, 1 Hz) of the gastric wall was performed in 24 adult New Zealand rabbits with a novel catheter-mounted MAE with fluoroscopy and a surgical approach. Procedure time, procedure-related bleeding, perforation, and other complications were recorded. Animals were sacrificed at 30 min, 1 day, 3 days, 7 days, 14 days, and 28 days post-IRE. The stomach was removed en bloc, and the diameter of each lesion was measured. Histopathological analyses by Hematoxylin-Eosin (H&E), masson trichrome, alpha-smooth muscle action (α-SMA), and terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) were performed. RESULTS: Gastric tissue ablation with MAE-assisted IRE was successfully performed without any interruption. No perforation or bleeding was observed during IRE or throughout the follow-up period. A demarcated hemorrhage was found in the ablated area upon gross examination. H&E staining showed complete cell death with inflammatory infiltration, edema, and hemorrhaging. TUNEL presented diffuse positive cells in the ablated area. The tissue scaffold was well preserved without damage as indicated by Masson trichrome staining. Ulceration was observed starting from 3 days post-IRE. The mucosal layer was gradually recovered and regenerated within 14-28 days. No other complication was observed post-IRE. CONCLUSIONS: MAE-assisted IRE is safe and effective for normal gastric tissue ablation and the gastric wall recovered in 14-28 days post-IRE.


Asunto(s)
Técnicas de Ablación/instrumentación , Electrodos , Electroporación/instrumentación , Mucosa Gástrica/cirugía , Magnetismo , Animales , Modelos Animales de Enfermedad , Electroporación/métodos , Fenómenos Magnéticos , Conejos , Coloración y Etiquetado , Estómago/cirugía
8.
Angew Chem Int Ed Engl ; 59(35): 15199-15203, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32424859

RESUMEN

The chemical structures and topologies of the crosslinks in supramolecular networks play a crucial role in their properties and functions. Herein, the preparation of a type of poly(N-isopropylacrylamide) (PNIPAAM)-based supramolecular networks crosslinked by emissive hexagonal metallacycles is presented. The topological connections in these networks greatly affect their properties, as evidenced by their differences in absorption, emission, lower critical solution temperature, and modulus along with the variation of crosslinking densities. The integration of PNIPAAM and metallacycles in the networks benefits them improved bioavailability, making them serve as reagents for bacterial imaging and killing. This study provides a strategy to prepare cavity-crosslinked polymer networks for antibacterial applications.


Asunto(s)
Bacterias/química , Polímeros/química
9.
Zhongguo Yi Liao Qi Xie Za Zhi ; 44(2): 172-178, 2020 Feb 08.
Artículo en Zh | MEDLINE | ID: mdl-32400994

RESUMEN

Irreversible electroporation (IRE) is an emerging tissue ablation technique. Compared with thermal ablation technique such as radiofrequency, IRE can achieve focal ablation in a shorter time without heat sink effect while sparing the tissue scaffold. IRE has been demonstrated to be a feasible therapeutic modality for the liver, pancreatic, and prostatic cancer. In recent years, several studies regarding of catheter-directed IRE for digestive tract, bronchus, urinary tract, and myocardium have been performed, which preliminarily demonstrated the safety and efficacy of IRE for tissue ablation under endoscopic or interventional technique. This study summarized the research progress of catheter-directed IRE for tissue ablation. The critical technique and future direction of catheter-based IRE are prosp.


Asunto(s)
Ablación por Catéter , Electroporación , Catéteres , Endoscopía , Humanos
10.
J Cell Physiol ; 234(8): 12800-12808, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30537081

RESUMEN

Hypoxia leads to cancer progression and promotes the metastatic potential of cancer cells. Thereby, the aim of the present study was to investigate the detailed effects of gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) in colorectal cancer (CRC) cell lines under hypoxia conditions and explore the potential molecular mechanisms. Here, we observed that GRIM-19 expression was downregulated in several CRC cell lines as well as in HCT116 and Caco-2 cells under a hypoxic microenvironment. Additionally, the introduction of GRIM-19 obviously suppressed cell invasive ability and epithelial-mesenchymal transition (EMT) through modulating EMT markers as reflected by the upregulation of E-cadherin along with the downregulation of vimentin and N-cadherin under hypoxic conditions. Moreover, the addition of GRIM-19 repressed hypoxia-induced autophagy through modulating autophagy associated proteins as reflected by the downregulation of LC3-II/LC3-I ratio and Beclin-1 expression, as well as the increased of p62 expression. Interestingly, overexpression of GRIM-19 markedly ameliorated the accumulation of HIF-1α triggered by hypoxia accompanied by an inhibition of vascular endothelial growth factor (VEGF) production and phospho-signal transducer and activator of transcription 3 (p-STAT3) expression. Further data demonstrated that GRIM-19 have a negative feedback effect on the expression of HIF-1α. Mechanistically, re-expression of HIF-1α completely reversed the inhibitory effects of GRIM-19 on hypoxia-induced invasion and EMT. Taken all data together, our findings established that GRIM-19 suppresses hypoxia-triggered invasion and EMT by inhibiting hypoxia-induced autophagy through inactivation HIF-1α/STAT3 signaling pathway, indicating that GRIM-19 may serve as a potential predictive factor and therapeutic target for CRC treatment.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos
11.
Int J Hyperthermia ; 36(1): 854-867, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31452435

RESUMEN

Introduction: Irreversible electroporation (IRE) combined with a catheter-based electrode during endoscopy is a potential alternative treatment method for digestive tract tumors. The aim of this study was to investigate the electrical injury (EI) and thermal injury (TI) to the digestive tract via numerical analyses and to evaluate the role and impact of electrode configurations and pulse settings on the efficacy and outcomes of IRE. Materials and methods: A finite element method was used to solve the numerical model. A digestive tract model having 4-mm-thick walls and two catheter-based electrode configuration models were constructed. The distributions of electric fields, temperature, electrical conductivity, tissue injury and limitation on the pulse number required for IRE were calculated and compared. Results: Electrode length is an important geometric parameter for electrodes in the monopolar model (MPM), while electrode spacing affects the outcomes in the bipolar model (BPM). Increasing the pulse voltage reduces the pulse number required for tissue ablation, while increasing the risk of TI. In total, there were 6 NT-IRE protocols, 12 thermal-IRE protocols and 30 TI protocols. All of the NT-IRE protocols were set in BPMs with a voltage of 0.50 kV. With increasing electrode spacing, the minimum pulse number decreased. However, thermal effects were inevitable in the MPM. Conclusions: The electrode configuration and pulse settings are adjusted to achieve NT-IRE synergistically. The BPM is more reliable for achieving NT-IRE in 4-mm-thick digestive wall. Future in vitro and in vivo studies are needed to support and validate this conclusion.


Asunto(s)
Técnicas de Ablación , Electroporación , Tracto Gastrointestinal/lesiones , Modelos Biológicos , Catéteres , Conductividad Eléctrica , Electrodos , Neoplasias Gastrointestinales/terapia , Calor
12.
J Cell Physiol ; 233(10): 6975-6985, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29693251

RESUMEN

Notch signal has complex roles in human malignancies, which might be attributed to the diversity of Notch receptors. Here, we set out to identify the association of NOTCH4 with colorectal cancer (CRC). In the hospital-based study cohort, we investigated NOTCH4 mRNA levels in primary CRC, as well as its association with clinicopathologic characteristics. Besides, NOTCH4 cDNA and siRNA was transfected into colorectal cancer cell line to elucidate its impact on tumor cell proliferation and migration. Results revealed a statistically significant lower expression of NOTCH4 mRNA in tumor specimens compared with that in control. NOTCH4 level in CRC was found to be related to tumor differentiation, invasion, and node metastasis. Moreover, it was demonstrated that NOTCH4 mRNA level could be an independent prognostic factor for both disease-free and overall survival of CRC patients. Overexpression of NOTCH4 in CRC cell lines suppressed tumor cell proliferation, migration, and invasion, while induced apoptosis. In the opposite, the malignant behavior of CRC cells was enhanced by NOTCH4 knockdown. These results demonstrated for the first time that NOTCH4 expression was decreased in CRC, which could determine tumor proliferation, relapse, and prognosis.


Asunto(s)
Proliferación Celular/fisiología , Neoplasias Colorrectales/metabolismo , Receptor Notch4/metabolismo , Apoptosis/genética , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética
13.
Mol Carcinog ; 57(6): 762-771, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29500881

RESUMEN

As a novel candidate tumor suppressor, NDRG4 is largely unstudied in human malignancies. In this study, we investigated the protein expression level of NDRG4 in gastric cancer and its association with outcome of patients. In the present study, we recruited 286 patients with gastric cancer and investigated the protein and mRNA expression of NDRG4 in cancer and adjacent normal specimens by immunohistochemistry assay and real-time PCR. The association of NDRG4 level with clinicopathological characteristics was investigated by appropriate statistical analysis. NDRG4 overexpression and knockdown cell lines were established in order to detect its impact on proliferation and apoptosis. Significant decreased protein and mRNA expression of NDRG4 was found in gastric cancer, compared with adjacent normal specimens. Besides, it was found that NDRG4 protein expression in gastric cancer was significantly associated with tumor differentiation, invasion, metastasis, and stage. Patients with tumors of decreased NDRG4 level were more likely to have unfavorable disease-free and overall survival, in both univariate and multivariate analysis. In addition, overexpression of NDRG4 suppressed cell proliferation of gastric cancer cells in vitro; conversely, the proliferation of gastric cancer cells were enhanced by knockdown of NDRG4. These results proved for the first time that NDRG4 could be a potential tumor suppressor and prognostic marker of gastric cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Proliferación Celular/genética , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Neoplasias Gástricas/genética , Apoptosis/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Pronóstico , Interferencia de ARN , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/cirugía
14.
Tumour Biol ; 35(10): 9787-92, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24981248

RESUMEN

MicroRNAs are noncoding RNAs that regulate multiple cellular processes during cancer progression. Among various microRNAs, miR-630 has recently been identified to be implicated in many critical processes in human malignancies. We investigated the expression pattern and prognostic value of miR-630 in human colorectal cancer by utilizing cancer and adjacent normal specimens from 206 patients. Quantitative real-time PCR assay was used to detect the expression of miR-630, and appropriate statistical analysis was used to evaluate the association of miR-630 with overall survival. It was found that miR-630 expression was significantly increased in colorectal cancer specimens compared with that in adjacent normal specimens. It was also proved that miR-630 expression in colorectal cancer was associated with tumor invasion, lymph node metastasis, distant metastasis, and tumor-node-metastasis (TNM) stage. The Kaplan-Meier survival analysis proved that increased miR-630 expression was associated with poor overall survival of patients with colorectal cancer. Multivariate analysis proved that miR-630 was an independent prognostic marker after adjusted for known prognostic factors. These results confirmed the overexpression of miR-630 in human colorectal cancer and its association with tumor progression. It also suggested that miR-630 expression might serve as a prognostic biomarker for patients with colorectal cancer.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Colorrectales/patología , MicroARNs/biosíntesis , Anciano , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , MicroARNs/análisis , Persona de Mediana Edad , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Front Genet ; 15: 1368358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746055

RESUMEN

Chalcone synthase (CHS) is a key enzyme that catalyzes the first committed step of flavonoid biosynthetic pathway. It plays a vital role not only in maintaining plant growth and development, but also in regulating plant response to environmental hazards. However, the systematic phylogenomic analysis of CHS gene family in a wide range of plant species has not been reported yet. To fill this knowledge gap, a large-scale investigation of CHS genes was performed in 178 plant species covering green algae to dicotyledons. A total of 2,011 CHS and 293 CHS-like genes were identified and phylogenetically divided into four groups, respectively. Gene distribution patterns across the plant kingdom revealed the origin of CHS can be traced back to before the rise of algae. The gene length varied largely in different species, while the exon structure was relatively conserved. Selection pressure analysis also indicated the conserved features of CHS genes on evolutionary time scales. Moreover, our synteny analysis pinpointed that, besides genome-wide duplication and tandem duplication, lineage specific transposition events also occurred in the evolutionary trajectory of CHS gene family. This work provides novel insights into the evolution of CHS gene family and may facilitate further research to better understand the regulatory mechanism of traits relating to flavonoid biosynthesis in diverse plants.

16.
J Multidiscip Healthc ; 17: 901-912, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455275

RESUMEN

Purpose: We conducted a multicenter cross-sectional study in central and western China to explore the association between inflammatory diet and stomach cancer odds. Patients and Methods: Participants from five hospitals in the central and western regions were collected. All participants completed the questionnaire we provided before the gastroscopy examination, which includes inquiries about risk factors for stomach cancer and food frequency. All participants underwent gastroscopy, and a mucosal biopsy was confirmed pathologically. Pathological findings were classified as chronic gastritis group, precancerous lesions group and stomach cancer group. Dietary Inflammatory Index (DII) scores were calculated based on the frequency of food occurrences in the questionnaire, and finally SPSS was used to calculate the correlation between variables. Results: A total of 1162 patients were included in this study, including 668 cases of chronic gastritis, 411 cases of precancerous lesions, and 83 cases of cancer. A single factor analysis was conducted to examine the risk factors of stomach cancer, revealing a significant association between a pro-inflammatory diet and the stomach cancer odds (p value < 0.05). The results of binary classification analysis further confirmed that a pro-inflammatory diet is a risk factor for stomach cancer 【odds ratio (OR) =7.400)】. Moreover, correlation analysis demonstrated a positive correlation between the severity of gastric mucosal diseases and an inflammatory diet (including anti-inflammatory and pro-inflammatory diets) (rs=0.274, p-value < 0.001). Conclusion: Pro-Inflammatory diet is a risk factor for stomach cancer, and may accelerate the progression of stomach mucosal disease.

17.
Adv Healthc Mater ; 13(8): e2303157, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38247348

RESUMEN

Elevated temperatures can deactivate tissues in the burn wound area, allowing pathogenic bacteria to multiply on the wound surface, ultimately leading to local or systemic infection. An ideal burn dressing should provide antibacterial properties and facilitate painless dressing changes. Silk microfibers coated with poly (2, 3, 4-trihydroxybenzaldehyde) (referred to as mSF@PTHB) to in situ reduce AgNO3 to silver nanoparticles (AgNPs) in a hydrazide hyaluronic acid-based hydrogel are utilized. The findings indicate a more homogeneous distribution of the silver elements compared to directly doped AgNPs, which also conferred antioxidant and antibacterial properties to the hydrogel. Moreover, hydrogels containing pH-responsive dynamic acylhydrazone bonds can undergo a gel-sol transition in a weak acid environment, leading to the painless removal of adhesive hydrogel dressings. Notably, the on-demand replaceable self-healing antioxidant hydrogel dressing exhibits antibacterial effects and cytocompatibility in vitro, and the wound-healing performance of the hydrogel is validated by treating a burn mouse model with full-thickness skin defects. It is demonstrated that hydrogel dressings offer a viable therapeutic approach to prevent infection and facilitate the healing of burn wounds.


Asunto(s)
Quemaduras , Nanopartículas del Metal , Ratones , Animales , Hidrogeles/química , Plata/química , Ácido Hialurónico , Nanopartículas del Metal/química , Antioxidantes/uso terapéutico , Cicatrización de Heridas , Vendajes , Antibacterianos/química , Quemaduras/tratamiento farmacológico
18.
Adv Healthc Mater ; : e2400797, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726796

RESUMEN

The Notch signaling is a key molecular pathway that regulates cell fate and development. Aberrant Notch signaling can lead to carcinogenesis and progression of malignant tumors. However, current therapies targeting Notch pathway lack specificity and induce high toxicity. In this report, a tumor microenvironment-responsive and injectable hydrogel is designed to load plasmid DNA complexes as a cascade gene delivery system to achieve precise Notch-targeted gene therapy of colorectal cancer (CRC). The hydrogels are prepared through cross-linking between phenylboric acid groups containing poly(oligo(ethylene glycol)methacrylate) (POEGMA) and epigallocatechin gallate (EGCG), used to load the complexes between plasmid DNA encoding short hairpin RNAs of Notch1 (shNotch1) and fluorinated polyamidoamine (PAMAM-F) (PAMAM-F/shNotch1). In response to low pH and H2O2 in tumor microenvironment, the hydrogel can be dissociated and release the complexes for precise delivery of shNotch1 into tumor cells and inhibit Notch1 activity to suppress malignant biological behaviors of CRC. In the subcutaneous tumor model of CRC, PAMAM-F/shNotch1-loaded hydrogels can accurately attenuate Notch1 activity and significantly inhibit tumor growth without affecting Notch signal in adjacent normal tissues. Therefore, this therapeutic system can precisely inhibit Notch1 signal in CRC with high responsiveness and low toxicity, providing a promising Notch-targeted gene therapeutic for human malignancy.

19.
Chem Sci ; 15(10): 3758-3766, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455015

RESUMEN

Chirality transfer for natural chiral biomolecules can reveal the indispensable role of chiral structures in life and can be used to develop the chirality-sensing biomolecular recognition. Here, we report the synthesis and characterization of a series of achiral supramolecular organic frameworks (SOF-1, SOF-2, and SOF-3), constructed from cucurbit[8]uril (CB[8]) and tetraphenylethene (TPE) derivatives (1, 2, and 3), respectively, as chirality-sensing platforms to explore their chirality transfer mechanism for peptides in water. Given the right-handed (P) and left-handed (M) rotational conformation of TPE units and the selective binding of CB[8] to aromatic amino acids, these achiral SOFs can be selectively triggered in water by peptides containing N-terminal tryptophan (W) and phenylalanine (F) residues into their P- or M-rotational conformation, exhibiting significantly different circular dichroism (CD) spectra. Although various peptides have the same l-type chiral configuration, they can induce positive CD signals of SOF-1 and negative CD signals of SOF-2 and SOF-3, respectively. Based on the structural analysis of the linkage units between CB[8] and TPE units in these SOFs, a "gear-driven"-type chirality transfer mechanism has been proposed to visually illustrate the multiple-step chirality transfer process from the recognition site in the CB[8]'s cavity to TPE units. Furthermore, by utilizing the characteristic CD signals generated through the "gear-driven"-type chirality transfer, these SOFs can serve as chiroptical sensor arrays to effectively recognize and distinguish various peptides based on their distinctive CD spectra.

20.
Nanomicro Lett ; 16(1): 226, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916749

RESUMEN

The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy. Here, we report two perylene diimide-based metallacages that can form stable host-guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers (hypocrellin A). Such host-guest complexation not only prevents the aggregation of photosensitizers in aqueous environments, but also offers fluorescence resonance energy transfer (FRET) from the metallacage to the photosensitizers to further improve the singlet oxygen generation (ΦΔ = 0.66). The complexes are further assembled with amphiphilic polymers, forming nanoparticles with improved stability for anticancer study. Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation, showing great potential for cancer photodynamic therapy. This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host-guest complexation-based FRET, which will open a new avenue for host-guest chemistry-based supramolecular theranostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA