Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Prosthet Dent ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38582709

RESUMEN

STATEMENT OF PROBLEM: The outcome of photopolymerized 3-dimensional (3D) printing is influenced by the methods used for postprinting cleaning, yet information on postprinting cleaning is sparse. PURPOSE: The purpose of this in vitro study was to assess the cleaning efficiency and surface and mechanical properties of 3D printed resin according to postprinting cleaning methods. MATERIAL AND METHODS: Specimens were fabricated from a 3D model using resin materials (NextDent C&B MFH and DIOnavi-P. MAX) and were tested for postprinting cleaning methods for 5 minutes with isopropyl alcohol, isopropyl alcohol + ultrasonic, ethyl alcohol, ethyl alcohol + ultrasonic, and ultrasonic alone. Postpolymerization was followed for 5 minutes. The cleaning efficiency, microcomputed tomography (µCT), surface roughness, Vickers hardness, and flexural strength of the specimens were evaluated. The 1-way ANOVA test was performed after considering normality. A post hoc analysis with Bonferroni was also performed (α=.008 or.005). RESULTS: Ultrasonic in addition to cleaning solutions significantly improved the cleaning efficiency in NextDent C&B MFH specimens (P<.005), whereas ultrasonic did not affect the efficiency in DIOnavi-P. MAX specimens. No significant differences were found in surface roughness by postprinting cleaning methods in either NextDent C&B MFH or DIOnavi-P. MAX (P>.005). No significant changes in surface hardness were observed by postprinting cleaning methods (P>.008). In the NextDent C&B MFH, ethyl alcohol + ultrasonic significantly decreased the flexural strength (P<.005). There were no significant differences in the flexural strength in the DIOnavi-P. MAX (P>.005). CONCLUSIONS: Ethyl alcohol was comparable with isopropyl alcohol for use as a postprinting cleaning solution for both NextDent C&B MFH and DIOnavi-P. MAX. The addition of ultrasonic to cleaning solutions should be applied with caution. These findings suggest that different postprinting cleaning methods can be recommended depending on the 3D printed resin materials.

2.
BMC Oral Health ; 22(1): 550, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456927

RESUMEN

BACKGROUND: In clinical settings, tooth preparation for prefabricated zirconia crowns (PZCs) in the primary dentition varies widely. However, knowledge about the biomechanical behavior of PZCs in various clinical settings is limited. This study was conducted to evaluate the biomechanical behavior of PZCs in different clinical settings using 3-dimensional finite element analysis. METHODS: 3-dimensional models of the PZC, cement, and tooth with six different conditions were simulated in primary molar teeth, incorporating cement thickness (100, 500, and 1000 µm) and cement type (resin-modified glass ionomer cement and resin cement). A total of 200 N of occlusal force was applied to the models, both vertically and obliquely as representative cases. A general linear model univariate analysis with partial eta-squared (ηp2) was performed to evaluate the relative effects of the variables. RESULTS: The overall stress of tooth was increased as the cement space increases under oblique loading. The von Mises stress values of the resin cements were significantly higher than those of the resin-modified glass ionomer cements for all cement thicknesses (p < .05). The effect size of the cement type (ηp2 = .519) was more dominant than the cement thickness (ηp2 = .132) in the cement layer. CONCLUSIONS: Within the limits of this study, cement type has a greater influence on the biomechanical behavior of PZCs than cement thickness.


Asunto(s)
Cementos Dentales , Preparación del Diente , Humanos , Niño , Análisis de Elementos Finitos , Cementos de Ionómero Vítreo , Materiales Dentales , Cementos de Resina , Coronas
3.
BMC Oral Health ; 21(1): 565, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749714

RESUMEN

BACKGROUND: Internal voids of materials can serve a hub for microorganism and affect the sealing ability. This study aimed to evaluate the sealing performance of calcium silicate-based cements in immature teeth treated with regenerative endodontics. METHODS: Twenty single root canals from immature permanent premolars were prepared using regenerative endodontic protocols. The root canals were randomly divided into two groups and sealed with mineral trioxide aggregate (MTA) and Biodentine (BD). The teeth were kept in humid environment for 7 days and scanned using micro-computed tomography. The voids within the cements were segmented and visualized using image processing, incorporating the modified Otsu algorithm. The porosity of each sample was also calculated as the ratio between the number of voxels of voids and the volume of the cements. Tortuosity was also calculated using the A-star algorithm. RESULTS: Voids larger than 70 µm were predominantly observed in the top and interfacial surface of cements. The others were evenly distributed. MTA and BD showed the same level of porosity and tortuosity at interfacial surfaces. In inner surfaces, MTA showed more less porosity and tortuosity compared to BD (p < 0.05). CONCLUSIONS: There were no differences in sealing performance between MTA and BD.


Asunto(s)
Endodoncia Regenerativa , Materiales de Obturación del Conducto Radicular , Compuestos de Aluminio , Compuestos de Calcio , Combinación de Medicamentos , Humanos , Óxidos , Silicatos , Microtomografía por Rayos X
4.
J Hazard Mater ; 455: 131645, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37207483

RESUMEN

The growth of the polyethylene terephthalate (PET) mechanical recycling industry has resulted in the challenge of generating microplastics (MPs). However, little attention has been given to investigating the release of organic carbon from these MPs and their roles in promoting bacterial growth in aquatic environments. In this study, a comprehensive method is proposed to access the potential of organic carbon migration and biomass formation of MPs generated from a PET recycling plant, and to understand its impact on the biological systems of freshwater habitats. Various MPs sizes from a PET recycling plant were selected to conduct a series of tests, including the organic carbon migration test, biomass formation potential test, and microbial community analysis. The MPs smaller than 100 µm, which are difficult to remove from the wastewater, exhibited greater biomass in the observed samples (1.05 × 1011 bacteria per gram MPs). Moreover, PET MPs altered the microbial diversity, with Burkholderiaceae becoming the most abundant, while Rhodobacteraceae was eliminated after being incubated with MPs. This study partly revealed that organic matter adsorbed on the surface of MPs was a significant nutrient source that increased biomass formation. PET MPs acted not only as carriers for microorganisms but also for organic matter. As a result, it is crucial to develop and refine recycling methods in order to decrease the production of PET MPs and minimize their adverse effects on the environment.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Microplásticos/análisis , Plásticos , Tereftalatos Polietilenos , Biomasa , Contaminantes Químicos del Agua/análisis
5.
Environ Pollut ; 306: 119407, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35526648

RESUMEN

This study investigated the effects of adding biochar (BC) on the fate of ciprofloxacin (CIP) and its related antibiotic tolerance (AT) in activated sludge. Three activated sludge reactors were established with different types of BC, derived from apple, pear, and mulberry tree, respectively, and one reactor with no BC. All reactors were exposed to an environmentally relevant level of CIP that acted as a definitive selective pressure significantly promoting AT to four representative antibiotics (CIP, ampicillin, tetracycline, and polymyxin B) by up to two orders of magnitude. While CIP removal was negligible in the reactor without BC, the BC-dosed reactors effectively removed CIP (70-95% removals) through primarily adsorption by BC and biodegradation/biosorption by biomass. The AT in the BC-added reactors was suppressed by 10-99%, compared to that without BC. The BC addition played a key role in sequestering CIP, thereby decreasing the selective pressure that enabled the proactive prevention of AT increase. 16S rRNA gene sequencing analysis showed that the BC addition alleviated the CIP-mediated toxicity to community diversity and organisms related to phosphorous removal. Machine learning modeling with random forest and support vector models using AS microbiome data collectively pinpointed Achromobacter selected by CIP and strongly associated with the AT increase in activated sludge. The identification of Achromobacter as an important AT bacteria revealed by the machine learning modeling with multiple models was also validated with a linear Pearson's correlation analysis. Overall, our study highlighted Achromobacter as a potential useful sentinel for monitoring AT occurring in the environment and suggested BC as a promising additive in wastewater treatment to improve micropollutant removal, mitigate potential AT propagation, and maintain community diversity against toxic antibiotic loadings.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Antibacterianos/toxicidad , Carbón Orgánico , Ciprofloxacina/análisis , Ciprofloxacina/toxicidad , ARN Ribosómico 16S , Aguas del Alcantarillado/microbiología
6.
Materials (Basel) ; 14(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34772232

RESUMEN

This paper deals with the hygric characterization of early 20th century machine-made clay bricks, representative of great number of historical buildings in north-eastern Poland. Heritage buildings have a high potential for adaptive reuse, which is strictly connected with an urge for knowledge about the properties of these existing building envelopes. To better understand the hygric behavior of historic buildings, various experimental laboratory tests, including density, water absorption, compressive strength and freeze-thaw resistance, were conducted. In order to assess the microstructural characteristics of the tested bricks, mercury intrusion porosimetry (MIP) and X-ray micro-computed tomography (micro-CT) tests were performed. These tests were conducted on clay bricks from historic buildings, as well as on those that are currently being produced, in order to identify the relationship between the materials used in the past and the replacements produced presently. This paper addresses the lack of systematic application of existing standards for evaluating the state of the conservation of historic bricks and for establishing the specifications for replacement bricks. The results of conducted study and further research will be the basis for creating a historic materials database. It would be a useful tool for selecting bricks that correspond with the historically used materials and help to maintain homogenous structure of the restored buildings.

7.
Materials (Basel) ; 14(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34442895

RESUMEN

Conventional pervious pavement materials (PPM) that consist of cement and aggregate materials are known for poor durability due to their brittle behavior. Thus, to enhance the durability, we fabricated polymeric PPMs from durable and abundant polyurethane (PU) and undertook mechanical and microscopic characterizations. PU-based PPM samples with varying aggregate sizes were produced and examined to test their compressive strength and water permeability. Furthermore, X-ray micro-computed tomography (micro-CT) was implemented to analyze the samples' pore and tortuosity characteristics. Through the micro-CT analysis, the morphological characteristics of PPM's internal structures were identified and quantitively analyzed the correlations between the pore size distribution, connectivity, and tortuosity within the samples. Finally, the microstructures derived from micro-CT were generated as a finite element model and also numerically determined the stress distribution generated inside.

8.
Materials (Basel) ; 13(11)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526963

RESUMEN

The performance of vacuum insulation panels (VIPs) is strongly affected by several factors, such as panel thickness, design, quality of vacuum, and material type. In particular, the core materials inside VIPs significantly influence their overall performance. Despite their superior insulation performance, VIPs are limited in their widespread use as structural materials, because of their low material strength and the relatively expensive core materials. As an alternative core material that can compensate these limitations, foamed concrete, a type of lightweight concrete with very low density, can be used. In this study, two different types of foamed concrete were used as VIP core materials, with their effects on the thermal behavior of the VIPs having been evaluated using experimental and numerical methods. To confirm and generate numerical models for VIP analysis, micro-computed tomography (micro-CT) was utilized. The obtained results show that insulation effects increase effectively when panels with lightweight concrete are in a vacuum, and both foamed concrete types can be effectively used as VIP core materials.

9.
Materials (Basel) ; 12(19)2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31546591

RESUMEN

This study presents the results of an experimental investigation of the effects of nanosilica (NS) on the strength development, transport properties, thermal conductivity, air-void, and pore characteristics of lightweight aggregate concrete (LWAC), with an oven-dry density <1000 kg/m3. Four types of concrete mixtures, containing 0 wt.%, 1 wt.%, 2 wt.%, and 4 wt.% of NS were prepared. The development of flexural and compressive strengths was determined for up to 90 days of curing. In addition, transport properties and microstructural properties were determined, with the use of RapidAir, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM) techniques. The experimental results showed that NS has remarkable effects on the mechanical and transport properties of LWACs, even in small dosages. A significant improvement in strength and a reduction of transport properties, in specimens with an increased NS content, was observed. However, the positive effects of NS were more pronounced when a higher amount was incorporated into the mixtures (>1 wt.%). NS contributed to compaction of the LWAC matrix and a modification of the air-void system, by increasing the amount of solid content and refining the fine pore structure, which translated to a noticeable improvement in mechanical and transport properties. On the other hand, NS decreased the consistency, while increasing the viscosity of the fresh mixture. An increment of superplasticizer (SP), along with a decrement of stabilizer (ST) dosages, are thus required.

10.
Materials (Basel) ; 10(12)2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29186854

RESUMEN

Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA