Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pediatr Cardiol ; 36(6): 1294-300, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25835201

RESUMEN

The aim is to compare tricuspid valve (TV) atrioventricular junction (AVJ) annular motion parameters in unrepaired atrial septal defect (ASD) and repaired Tetralogy of Fallot (TOF) by cardiac magnetic resonance (CMR) imaging. We retrospectively reviewed CMR studies performed between November 2007 and November 2013 in patients 16-45 years of age with unrepaired ASD (with or without partial anomalous pulmonary venous return) and with repaired TOF, who had previous infundibulotomy, but have not undergone pulmonary valve replacement. Longitudinal motion of lateral TV in four-chamber view cine image was tracked through the cardiac cycle with custom software. Twenty TOF patients and 12 ASD patients were included, and values were compared with 80 controls. Right ventricular end-diastolic volume index and right ventricular end-systolic volume index were similar in the ASD and TOF groups and were significantly higher in both groups than in controls. Maximum displacement of the TV in systole, velocity at half-maximal displacement during systole, and velocity at half-maximal displacement during early diastole were all significantly lower in the TOF group than the ASD group [1.39 ± 0.47 vs. 2.21 ± 0.46 (cm, p < 0.01), 5.9 ± 2.1 vs. 10.1 ± 2.3 (cm/s, p < 0.01), and 7.7 ± 2.6 vs. 10.9 ± 3.1 (cm/s, p < 0.05)]. TOF patients have diminished early diastolic TV AVJ velocity compared to patients with an unrepaired ASD, despite similar RV volumes. This observation could suggest diastolic dysfunction or cardiac mechanics unique to the postoperative, volume-overloaded right ventricle in patients with repaired TOF.


Asunto(s)
Defectos del Tabique Interatrial/fisiopatología , Ventrículos Cardíacos/patología , Imagen por Resonancia Magnética , Tetralogía de Fallot/cirugía , Válvula Tricúspide/fisiopatología , Función Ventricular Derecha , Adolescente , Adulto , Velocidad del Flujo Sanguíneo , Procedimientos Quirúrgicos Cardíacos/métodos , Ecocardiografía , Femenino , Defectos del Tabique Interatrial/diagnóstico por imagen , Defectos del Tabique Interatrial/patología , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Volumen Sistólico , Tetralogía de Fallot/diagnóstico por imagen , Tetralogía de Fallot/patología , Tetralogía de Fallot/fisiopatología , Válvula Tricúspide/diagnóstico por imagen , Adulto Joven
2.
J Magn Reson Imaging ; 39(5): 1301-7, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24719241

RESUMEN

PURPOSE: To assess liver stiffness using magnetization-tagged magnetic resonance imaging (MRI) to measure the cardiac-induced motion in the liver of cirrhosis patients with known Child-Pugh scores. MATERIALS AND METHODS: Tagged MRI was performed using a 3T MR scanner on 52 cirrhosis patients classified into two groups: liver cirrhosis with Child-Pugh A (LCA; n = 39) and liver cirrhosis with Child-Pugh B or C (LCBC; n = 13). We also included 19 healthy controls. Tagged images were acquired encompassing both the liver and the heart. The corresponding displacement and strains were calculated using a Gabor filter bank. The maximum displacement (MaxDisp) was found over the cardiac cycle, as well as the local maximum P1 (MaxP1) and minimum P2 strains (MinP2). Group comparisons were made without and with adjustment for age and gender. RESULTS: In control, LCA, and LCBC groups, the MaxDisp was 3.98 ± 0.88 mm, 2.52 ± 0.73 mm, and 1.86 ± 0.77 mm; the MaxP1 was 0.10 ± 0.02, 0.04 ± 0.01, and 0.02 ± 0.01; and the MinP2 was -0.08 ± 0.01, -0.05 ± 0.02, and -0.03 ± 0.01, respectively. Statistically significant differences were found between groups (P < 0.05 for all). CONCLUSION: This method measures cardiac-induced liver motion and deformation to assess liver stiffness. Significant differences were found in our stiffness measures between control, LCA, and LCBC groups, with more severe disease being associated with greater stiffness.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Corazón/fisiopatología , Interpretación de Imagen Asistida por Computador/métodos , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/fisiopatología , Hígado/patología , Hígado/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Módulo de Elasticidad , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Contracción Miocárdica/fisiología , Miocardio/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado , Adulto Joven
3.
J Cardiovasc Magn Reson ; 16: 71, 2014 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-25242199

RESUMEN

BACKGROUND: Measurement of mitral annulus (MA) dynamics is an important component of the evaluation of left ventricular (LV) diastolic function; MA velocities are commonly measured using tissue Doppler imaging (TDI). This study aimed to examine the clinical potential of a semi-automated cardiovascular magnetic resonance (CMR) technique for quantifying global LV diastolic function, using 3D volume tracking of the MA with conventional cine-CMR images. METHODS: 124 consecutive patients with normal ejection fraction underwent both clinically indicated transthoracic echocardiography (TTE) and CMR within 2 months. Interpolated 3D reconstruction of the MA over time was performed with semi-automated atrioventricular junction (AVJ) tracking in long-axis cine-CMR images, producing an MA sweep volume over the cardiac cycle. CMR-based diastolic function was evaluated, using the following parameters: peak volume sweep rates in early diastole (PSRE) and atrial systole (PSRA), PSRE/PSRA ratio, deceleration time of sweep volume (DTSV), and 50% diastolic sweep volume recovery time (DSVRT50); these were compared with TTE diastolic measurements. RESULTS: Patients with TTE-based diastolic dysfunction (n = 62) showed significantly different normalized MA sweep volume profiles compared to those with TTE-based normal diastolic function (n = 62), including a lower PSRE (5.25 ± 1.38 s-1 vs. 7.72 ± 1.7 s-1), a higher PSRA (6.56 ± 1.99 s-1 vs. 4.67 ± 1.38 s-1), a lower PSRE/PSRA ratio (0.9 ± 0.44 vs. 1.82 ± 0.69), a longer DTSV (144 ± 55 ms vs. 96 ± 37 ms), and a longer DSVRT50 (25.0 ± 11.0% vs. 15.6 ± 4.0%) (all p < 0.05). CMR diastolic parameters were independent predictors of TTE-based diastolic dysfunction after adjusting for left ventricular hypertrophy, hypertension, and coronary artery disease. Good correlations were observed between CMR PSRE/PSRA and early-to-late diastolic annular velocity ratios (e'/a') measured by TDI (r = 0.756 to 0.828, p < 0.001). CONCLUSIONS: 3D MA sweep volumes generated by semi-automated AVJ tracking in routinely acquired CMR images yielded diastolic parameters that were effective in identifying patients with diastolic dysfunction when correlated with TTE-based variables.


Asunto(s)
Diástole , Ecocardiografía Doppler de Pulso , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Cinemagnética/métodos , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/fisiopatología , Disfunción Ventricular Izquierda/diagnóstico , Función Ventricular Izquierda , Adulto , Anciano , Automatización , Femenino , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Volumen Sistólico , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/fisiopatología
4.
J Cardiovasc Magn Reson ; 16: 35, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24886666

RESUMEN

BACKGROUND: We have developed a novel and practical cardiovascular magnetic resonance (CMR) technique to evaluate left ventricular (LV) mitral annular motion by tracking the atrioventricular junction (AVJ). To test AVJ motion analysis as a metric for LV function, we compared AVJ motion variables between patients with hypertrophic cardiomyopathy (HCM), a group with recognized systolic and diastolic dysfunction, and healthy volunteers. METHODS: We retrospectively evaluated 24 HCM patients with normal ejection fractions (EF) and 14 healthy volunteers. Using the 4-chamber view cine images, we tracked the longitudinal motion of the lateral and septal AVJ at 25 time points during the cardiac cycle. Based on AVJ displacement versus time, we calculated maximum AVJ displacement (MD) and velocity in early diastole (MVED), velocity in diastasis (VDS) and the composite index VDS/MVED. RESULTS: Patients with HCM showed significantly slower median lateral and septal AVJ recoil velocities during early diastole, but faster velocities in diastasis. We observed a 16-fold difference in VDS/MVED at the lateral AVJ [median 0.141, interquartile range (IQR) 0.073, 0.166 versus 0.009 IQR -0.006, 0.037, P < 0.001]. Patients with HCM also demonstrated significantly less mitral annular excursion at both the septal and lateral AVJ. Performed offline, AVJ motion analysis took approximately 10 minutes per subject. CONCLUSIONS: Atrioventricular junction motion analysis provides a practical and novel CMR method to assess mitral annular motion. In this proof of concept study we found highly statistically significant differences in mitral annular excursion and recoil between HCM patients and healthy volunteers.


Asunto(s)
Cardiomiopatía Hipertrófica/diagnóstico , Imagen por Resonancia Cinemagnética , Válvula Mitral/fisiopatología , Miocardio/patología , Disfunción Ventricular Izquierda/diagnóstico , Función Ventricular Izquierda , Adulto , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/fisiopatología , Medios de Contraste , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
5.
Sci Rep ; 14(1): 9835, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744901

RESUMEN

Biological sex is a crucial variable in neuroscience studies where sex differences have been documented across cognitive functions and neuropsychiatric disorders. While gross statistical differences have been previously documented in macroscopic brain structure such as cortical thickness or region size, less is understood about sex-related cellular-level microstructural differences which could provide insight into brain health and disease. Studying these microstructural differences between men and women paves the way for understanding brain disorders and diseases that manifest differently in different sexes. Diffusion MRI is an important in vivo, non-invasive methodology that provides a window into brain tissue microstructure. Our study develops multiple end-to-end classification models that accurately estimates the sex of a subject using volumetric diffusion MRI data and uses these models to identify white matter regions that differ the most between men and women. 471 male and 560 female healthy subjects (age range, 22-37 years) from the Human Connectome Project are included. Fractional anisotropy, mean diffusivity and mean kurtosis are used to capture brain tissue microstructure characteristics. Diffusion parametric maps are registered to a standard template to reduce bias that can arise from macroscopic anatomical differences like brain size and contour. This study employ three major model architectures: 2D convolutional neural networks, 3D convolutional neural networks and Vision Transformer (with self-supervised pretraining). Our results show that all 3 models achieve high sex classification performance (test AUC 0.92-0.98) across all diffusion metrics indicating definitive differences in white matter tissue microstructure between males and females. We further use complementary model architectures to inform about the pattern of detected microstructural differences and the influence of short-range versus long-range interactions. Occlusion analysis together with Wilcoxon signed-rank test is used to determine which white matter regions contribute most to sex classification. The results indicate that sex-related differences manifest in both local features as well as global features / longer-distance interactions of tissue microstructure. Our highly consistent findings across models provides new insight supporting differences between male and female brain cellular-level tissue organization particularly in the central white matter.


Asunto(s)
Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética , Caracteres Sexuales , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen de Difusión por Resonancia Magnética/métodos , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Conectoma , Procesamiento de Imagen Asistido por Computador/métodos
6.
ArXiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38463511

RESUMEN

Joint modeling of diffusion and relaxation has seen growing interest due to its potential to provide complementary information about tissue microstructure. For brain white matter, we designed an optimal diffusion-relaxometry MRI protocol that samples multiple b-values, B-tensor shapes, and echo times (TE). This variable-TE protocol (27 min) has as subsets a fixed-TE protocol (15 min) and a 2-shell dMRI protocol (7 min), both characterizing diffusion only. We assessed the sensitivity, specificity and reproducibility of these protocols with synthetic experiments and in six healthy volunteers. Compared with the fixed-TE protocol, the variable-TE protocol enables estimation of free water fractions while also capturing compartmental T2 relaxation times. Jointly measuring diffusion and relaxation offers increased sensitivity and specificity to microstructure parameters in brain white matter with voxelwise coefficients of variation below 10%.

7.
AJNR Am J Neuroradiol ; 45(5): 637-646, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604737

RESUMEN

BACKGROUND AND PURPOSE: Several recent works using resting-state fMRI suggest possible alterations of resting-state functional connectivity after mild traumatic brain injury. However, the literature is plagued by various analysis approaches and small study cohorts, resulting in an inconsistent array of reported findings. In this study, we aimed to investigate differences in whole-brain resting-state functional connectivity between adult patients with mild traumatic brain injury within 1 month of injury and healthy control subjects using several comprehensive resting-state functional connectivity measurement methods and analyses. MATERIALS AND METHODS: A total of 123 subjects (72 patients with mild traumatic brain injury and 51 healthy controls) were included. A standard fMRI preprocessing pipeline was used. ROI/seed-based analyses were conducted using 4 standard brain parcellation methods, and the independent component analysis method was applied to measure resting-state functional connectivity. The fractional amplitude of low-frequency fluctuations was also measured. Group comparisons were performed on all measurements with appropriate whole-brain multilevel statistical analysis and correction. RESULTS: There were no significant differences in age, sex, education, and hand preference between groups as well as no significant correlation between all measurements and these potential confounders. We found that each resting-state functional connectivity measurement revealed various regions or connections that were different between groups. However, after we corrected for multiple comparisons, the results showed no statistically significant differences between groups in terms of resting-state functional connectivity across methods and analyses. CONCLUSIONS: Although previous studies point to multiple regions and networks as possible mild traumatic brain injury biomarkers, this study shows that the effect of mild injury on brain resting-state functional connectivity has not survived after rigorous statistical correction. A further study using subject-level connectivity analyses may be necessary due to both subtle and variable effects of mild traumatic brain injury on brain functional connectivity across individuals.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Descanso , Adulto Joven , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología
8.
AJNR Am J Neuroradiol ; 45(6): 795-801, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38637022

RESUMEN

BACKGROUND: Mild traumatic brain injury is theorized to cause widespread functional changes to the brain. Resting-state fMRI may be able to measure functional connectivity changes after traumatic brain injury, but resting-state fMRI studies are heterogeneous, using numerous techniques to study ROIs across various resting-state networks. PURPOSE: We systematically reviewed the literature to ascertain whether adult patients who have experienced mild traumatic brain injury show consistent functional connectivity changes on resting-state -fMRI, compared with healthy patients. DATA SOURCES: We used 5 databases (PubMed, EMBASE, Cochrane Central, Scopus, Web of Science). STUDY SELECTION: Five databases (PubMed, EMBASE, Cochrane Central, Scopus, and Web of Science) were searched for research published since 2010. Search strategies used keywords of "functional MR imaging" and "mild traumatic brain injury" as well as related terms. All results were screened at the abstract and title levels by 4 reviewers according to predefined inclusion and exclusion criteria. For full-text inclusion, each study was evaluated independently by 2 reviewers, with discordant screening settled by consensus. DATA ANALYSIS: Data regarding article characteristics, cohort demographics, fMRI scan parameters, data analysis processing software, atlas used, data characteristics, and statistical analysis information were extracted. DATA SYNTHESIS: Across 66 studies, 80 areas were analyzed 239 times for at least 1 time point, most commonly using independent component analysis. The most analyzed areas and networks were the whole brain, the default mode network, and the salience network. Reported functional connectivity changes varied, though there may be a slight trend toward decreased whole-brain functional connectivity within 1 month of traumatic brain injury and there may be differences based on the time since injury. LIMITATIONS: Studies of military, sports-related traumatic brain injury, and pediatric patients were excluded. Due to the high number of relevant studies and data heterogeneity, we could not be as granular in the analysis as we would have liked. CONCLUSIONS: Reported functional connectivity changes varied, even within the same region and network, at least partially reflecting differences in technical parameters, preprocessing software, and analysis methods as well as probable differences in individual injury. There is a need for novel rs-fMRI techniques that better capture subject-specific functional connectivity changes.


Asunto(s)
Conmoción Encefálica , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Descanso , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Mapeo Encefálico/métodos , Conectoma/métodos
9.
AJNR Am J Neuroradiol ; 45(6): 788-794, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38637026

RESUMEN

BACKGROUND AND PURPOSE: Because the corpus callosum connects the left and right hemispheres and a variety of WM bundles across the brain in complex ways, damage to the neighboring WM microstructure may specifically disrupt interhemispheric communication through the corpus callosum following mild traumatic brain injury. Here we use a mediation framework to investigate how callosal interhemispheric communication is affected by WM microstructure in mild traumatic brain injury. MATERIALS AND METHODS: Multishell diffusion MR imaging was performed on 23 patients with mild traumatic brain injury within 1 month of injury and 17 healthy controls, deriving 11 diffusion metrics, including DTI, diffusional kurtosis imaging, and compartment-specific standard model parameters. Interhemispheric processing speed was assessed using the interhemispheric speed of processing task (IHSPT) by measuring the latency between word presentation to the 2 hemivisual fields and oral word articulation. Mediation analysis was performed to assess the indirect effect of neighboring WM microstructures on the relationship between the corpus callosum and IHSPT performance. In addition, we conducted a univariate correlation analysis to investigate the direct association between callosal microstructures and IHSPT performance as well as a multivariate regression analysis to jointly evaluate both callosal and neighboring WM microstructures in association with IHSPT scores for each group. RESULTS: Several significant mediators in the relationships between callosal microstructure and IHSPT performance were found in healthy controls. However, patients with mild traumatic brain injury appeared to lose such normal associations when microstructural changes occurred compared with healthy controls. CONCLUSIONS: This study investigates the effects of neighboring WM microstructure on callosal interhemispheric communication in healthy controls and patients with mild traumatic brain injury, highlighting that neighboring noncallosal WM microstructures are involved in callosal interhemispheric communication and information transfer. Further longitudinal studies may provide insight into the temporal dynamics of interhemispheric recovery following mild traumatic brain injury.


Asunto(s)
Conmoción Encefálica , Cuerpo Calloso , Humanos , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/fisiopatología , Masculino , Femenino , Adulto , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiopatología , Sustancia Blanca/patología , Análisis de Mediación , Adulto Joven , Imagen de Difusión por Resonancia Magnética/métodos
10.
Res Sq ; 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38045398

RESUMEN

The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as the Hofer/Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation. Here we present a novel subject-specific and microstructurally-informed method for callosal parcellation based on axonal water fraction (ƒ) known as a diffusion metric reflective of axon caliber and density. We studied 30 healthy subjects from the Human Connectome Project (HCP) dataset with multi-shell diffusion MRI. The biophysical parameter ƒ was derived from compartment-specific WM modeling. Inflection points were identified where there were concavity changes in ƒ across the CC to delineate callosal subregions. We observed relatively higher ƒ in anterior and posterior areas consisting of a greater number of small diameter fibers and lower ƒ in posterior body areas of the CC consisting of a greater number of large diameter fibers. Based on degree of change in ƒ along the callosum, seven callosal subregions can be consistently delineated for each individual. We observe that ƒ can capture differences in underlying tissue microstructures and seven subregions can be identified across CC. Therefore, this method provides microstructurally informed callosal parcellation in a subject-specific way, allowing for more accurate analysis in the corpus callosum.

11.
Neuroradiol J ; 36(6): 693-701, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37212469

RESUMEN

PURPOSE: Repeated head impacts (RHI) without concussion may cause long-term sequelae. A growing array of diffusion MRI metrics exist, both empiric and modeled and it is hard to know which are potentially important biomarkers. Common conventional statistical methods fail to consider interactions between metrics and rely on group-level comparisons. This study uses a classification pipeline as a means towards identifying important diffusion metrics associated with subconcussive RHI. METHODS: 36 collegiate contact sport athletes and 45 non-contact sport controls from FITBIR CARE were included. Regional/whole brain WM statistics were computed from 7 diffusion metrics. Wrapper-based feature selection was applied to 5 classifiers representing a range of learning capacities. Best 2 classifiers were interpreted to identify the most RHI-related diffusion metrics. RESULTS: Mean diffusivity (MD) and mean kurtosis (MK) are found to be the most important metrics for discriminating between athletes with and without RHI exposure history. Regional features outperformed global statistics. Linear approaches outperformed non-linear approaches with good generalizability (test AUC 0.80-0.81). CONCLUSION: Feature selection and classification identifies diffusion metrics that characterize subconcussive RHI. Linear classifiers yield the best performance and mean diffusion, tissue microstructure complexity, and radial extra-axonal compartment diffusion (MD, MK, De,⊥) are found to be the most influential metrics. This work provides proof of concept that applying such approach to small, multidimensional dataset can be successful given attention to optimizing learning capacity without overfitting and serves an example of methods that lead to better understanding of the myriad of diffusion metrics as they relate to injury and disease.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Atletas , Biomarcadores
12.
Magn Reson Med ; 65(4): 949-55, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21337420

RESUMEN

Cirrhosis is an important and growing public health problem, affecting millions of Americans and many more people internationally. A pathological hallmark of the progression to cirrhosis is the development of liver fibrosis, so that monitoring the appearance and progression of liver fibrosis can be used to guide therapy. Here, we report a method to use magnetization-tagged magnetic resonance imaging to measure the cardiac-induced motion and deformation in the liver, as a means for noninvasively assessing liver stiffness, which is related to fibrosis. The initial results show statistically significant differences between healthy and cirrhotic subjects in the direct comparisons of the maximum displacement (mm), and the maximum (P1) and minimum (P2) two-dimensional strains, through the cardiac cycle (3.514 ± 0.793, 2.184 ± 0.611; 0.116 ± 0.043, 0.048 ± 0.011; -0.094 ± 0.020, -0.041 ± 0.015; healthy, cirrhosis, respectively; P < 0.005 for all). There are also significant differences in the displacement-normalized P1 and P2 strains (mm(-1) ) (0.030 ± 0.008, 0.017 ± 0.007; -0.024 ± 0.006, -0.013 ± 0.004; healthy, cirrhosis, respectively; P < 0.005 for all). Therefore, this noninvasive imaging-based method is a promising means to assess liver stiffness using clinically available imaging tools.


Asunto(s)
Algoritmos , Diagnóstico por Imagen de Elasticidad/métodos , Corazón/fisiopatología , Interpretación de Imagen Asistida por Computador/métodos , Cirrosis Hepática/fisiopatología , Hígado/fisiopatología , Adulto , Módulo de Elasticidad , Femenino , Humanos , Hígado/patología , Cirrosis Hepática/patología , Masculino , Persona de Mediana Edad , Movimiento , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
13.
J Magn Reson Imaging ; 34(3): 676-84, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21761467

RESUMEN

PURPOSE: To develop, and validate in vivo, a robust quantitative first-pass perfusion cardiovascular MR (CMR) method with accurate arterial input function (AIF) and myocardial wall enhancement. MATERIALS AND METHODS: A saturation-recovery (SR) pulse sequence was modified to sequentially acquire multiple slices after a single nonselective saturation pulse at 3 Tesla. In each heartbeat, an AIF image is acquired in the aortic root with a short time delay (TD) (50 ms), followed by the acquisition of myocardial images with longer TD values (∼150-400 ms). Longitudinal relaxation rates (R(1) = 1/T(1)) were calculated using an ideal saturation recovery equation based on the Bloch equation, and corresponding gadolinium contrast concentrations were calculated assuming fast water exchange condition. The proposed method was validated against a reference multi-point SR method by comparing their respective R(1) measurements in the blood and left ventricular myocardium, before and at multiple time-points following contrast injections, in 7 volunteers. RESULTS: R(1) measurements with the proposed method and reference multi-point method were strongly correlated (r > 0.88, P < 10(-5)) and in good agreement (mean difference ±1.96 standard deviation 0.131 ± 0.317/0.018 ± 0.140 s(-1) for blood/myocardium, respectively). CONCLUSION: The proposed quantitative first-pass perfusion CMR method measured accurate R(1) values for quantification of AIF and myocardial wall contrast agent concentrations in 3 cardiac short-axis slices, in a total acquisition time of 523 ms per heartbeat.


Asunto(s)
Algoritmos , Circulación Coronaria/fisiología , Vasos Coronarios/fisiología , Gadolinio DTPA , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Imagen de Perfusión Miocárdica/métodos , Adulto , Medios de Contraste , Vasos Coronarios/anatomía & histología , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Magn Reson Med ; 64(2): 439-46, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20665788

RESUMEN

In MRI, the transmit radiofrequency field (B(1)(+)) inhomogeneity can lead to signal intensity variations and quantitative measurement errors. By independently mapping the local B(1)(+) variation, the radiofrequency-related signal variations can be corrected for. In this study, we present a new fast B(1)(+) mapping method using a slice-selective preconditioning radiofrequency pulse. Immediately after applying a slice-selective preconditioning pulse, a turbo fast low-angle-shot imaging sequence with centric k-space reordering is performed to capture the residual longitudinal magnetization left behind by the slice-selective preconditioning pulse due to B(1)(+) variation. Compared to the reference double-angle method, this method is considerably faster. Specifically, the total scan time for the double-angle method is equal to the product of 2 (number of images), the number of phase-encoding lines, and approximately 5T(1), whereas the slice-selective preconditioning method takes approximately 5T(1). This method was validated in vitro and in vivo with a 3-T whole-body MRI system. The combined brain and pelvis B(1)(+) measurements showed excellent agreement and strong correlation with those by the double-angle method (mean difference = 0.025; upper and lower 95% limits of agreement were -0.07 and 0.12; R = 0.93; P < 0.001). This fast B(1)(+) mapping method can be used for a variety of applications, including body imaging where fast imaging is desirable.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/anatomía & histología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Adulto , Femenino , Humanos , Masculino , Ondas de Radio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
IEEE Trans Med Imaging ; 38(11): 2545-2555, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30892204

RESUMEN

In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRIs) (obtained within one month of injury) by incorporating unsupervised feature learning techniques. MTBI is a growing public health problem with an estimated incidence of over 1.7 million people annually in USA. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. Unlike most of the previous works, which use hand-crafted features extracted from different parts of brain for MTBI classification, we employ feature learning algorithms to learn more discriminative representation for this task. A major challenge in this field thus far is the relatively small number of subjects available for training. This makes it difficult to use an end-to-end convolutional neural network to directly classify a subject from MRIs. To overcome this challenge, we first apply an adversarial auto-encoder (with convolutional structure) to learn patch-level features, from overlapping image patches extracted from different brain regions. We then aggregate these features through a bag-of-words approach. We perform an extensive experimental study on a dataset of 227 subjects (including 109 MTBI patients, and 118 age and sex-matched healthy controls) and compare the bag-of-deep-features with several previous approaches. Our experimental results show that the BAF significantly outperforms earlier works relying on the mean values of MR metrics in selected brain regions.


Asunto(s)
Conmoción Encefálica/diagnóstico por imagen , Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Adolescente , Adulto , Algoritmos , Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Humanos , Persona de Mediana Edad , Curva ROC , Adulto Joven
17.
Neuroimaging Clin N Am ; 28(1): 117-126, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29157848

RESUMEN

Remarkable advances have been made in the last decade in the use of diffusion MR imaging to study mild traumatic brain injury (mTBI). Diffusion imaging shows differences between mTBI patients and healthy control groups in multiple different metrics using a variety of techniques, supporting the notion that there are microstructural injuries in mTBI patients that radiologists have been insensitive to. Future areas of discovery in diffusion MR imaging and mTBI include larger longitudinal studies to better understand the evolution of the injury and unravel the biophysical meaning that the detected changes in diffusion MR imaging represent.


Asunto(s)
Conmoción Encefálica/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Humanos
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1267-1270, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30440621

RESUMEN

Mild traumatic brain injury is a growing public health problem with an estimated incidence of over 1.7 million people annually in US. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. This work aims to directly use diffusion MR images obtained within one month of trauma to detect injury, by incorporating deep learning techniques. To overcome the challenge due to limited training data, we describe each brain region using the bag of word representation, which specifies the distribution of representative patch patterns. We apply a convolutional auto-encoder to learn the patch-level features, from overlapping image patches extracted from the MR images, to learn features from diffusion MR images of brain using an unsupervised approach. Our experimental results show that the bag of word representation using patch level features learnt by the auto encoder provides similar performance as that using the raw patch patterns, both significantly outperform earlier work relying on the mean values of MR metrics in selected brain regions.


Asunto(s)
Aprendizaje Automático no Supervisado , Encéfalo , Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética
19.
Sci Rep ; 8(1): 3175, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29453439

RESUMEN

Working memory is a complex cognitive process at the intersection of sensory processing, learning, and short-term memory and also has a general executive attention component. Impaired working memory is associated with a range of neurological and psychiatric disorders, but very little is known about how working memory relates to underlying white matter (WM) microstructure. In this study, we investigate the association between WM microstructure and performance on working memory tasks in healthy adults (right-handed, native English speakers). We combine compartment specific WM tract integrity (WMTI) metrics derived from multi-shell diffusion MRI as well as diffusion tensor/kurtosis imaging (DTI/DKI) metrics with Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) subtests tapping auditory working memory. WMTI is a novel tool that helps us describe the microstructural characteristics in both the intra- and extra-axonal environments of WM such as axonal water fraction (AWF), intra-axonal diffusivity, extra-axonal axial and radial diffusivities, allowing a more biophysical interpretation of WM changes. We demonstrate significant positive correlations between AWF and letter-number sequencing (LNS), suggesting that higher AWF with better performance on complex, more demanding auditory working memory tasks goes along with greater axonal volume and greater myelination in specific regions, causing efficient and faster information process.


Asunto(s)
Memoria a Corto Plazo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Adolescente , Adulto , Niño , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/citología , Adulto Joven
20.
J Neurotrauma ; 35(8): 1015-1020, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29239261

RESUMEN

We seek to elucidate the underlying pathophysiology of injury sustained after mild traumatic brain injury (mTBI) using multi-shell diffusion magnetic resonance imaging, deriving compartment-specific white matter tract integrity (WMTI) metrics. WMTI allows a more biophysical interpretation of white matter (WM) changes by describing microstructural characteristics in both intra- and extra-axonal environments. Thirty-two patients with mTBI within 30 days of injury and 21 age- and sex-matched controls were imaged on a 3 Tesla magnetic resonance scanner. Multi-shell diffusion acquisition was performed with five b-values (250-2500 sec/mm2) along 6-60 diffusion encoding directions. Tract-based spatial statistics (TBSS) was used with family-wise error (FWE) correction for multiple comparisons. TBSS results demonstrated focally lower intra-axonal diffusivity (Daxon) in mTBI patients in the splenium of the corpus callosum (sCC; p < 0.05, FWE-corrected). The area under the curve value for Daxon was 0.76 with a low sensitivity of 46.9% but 100% specificity. These results indicate that Daxon may be a useful imaging biomarker highly specific for mTBI-related WM injury. The observed decrease in Daxon suggests restriction of the diffusion along the axons occurring shortly after injury.


Asunto(s)
Axones/patología , Conmoción Encefálica/patología , Conmoción Encefálica/fisiopatología , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología , Adulto , Conmoción Encefálica/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Sustancia Blanca/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA