RESUMEN
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a heritable myocardial disease with age-related penetrance. Current guidelines recommend clinical screening of relatives beginning at 10 years of age, but the clinical value of this approach has not been systematically evaluated. METHODS: Anonymized clinical data were collected from children referred for family screening between 1994 and 2017 after diagnosis of HCM in a first-degree relative. RESULTS: Of 1198 consecutive children (≤18 years of age) from 594 families who underwent serial evaluation (median, 3.5 years; interquartile range, 1.2-7), 32 individuals met diagnostic criteria at baseline (median maximal left ventricular wall thickness, 13 mm; interquartile range, 8-21 mm), and 25 additional patients developed HCM during follow-up. Median age at diagnosis was 10 years (interquartile range, 4-13 years); 44 (72%) were ≤12 years of age. Median age of affected patients at the last follow-up was 14 years (interquartile range, 9.5-18.2 years). A family history of childhood HCM was more common in those patients diagnosed with HCM (n=32 [56%] versus n=257 [23%]; P<0.001). Eighteen patients (32%) were started on medication for symptoms; 2 (4%) underwent a septal myectomy; 14 (25%) received an implantable cardioverter-defibrillator; 1 underwent cardiac transplantation; 2 had a resuscitated cardiac arrest; and 1 died after a cerebrovascular accident. CONCLUSIONS: Almost 5% of first-degree child relatives undergoing screening meet diagnostic criteria for HCM at first or subsequent evaluations, with the majority presenting as preadolescents; a diagnosis in a child first-degree relative is made in 8% of families screened. The phenotype of familial HCM in childhood is varied and includes severe disease, suggesting that clinical screening should begin at a younger age.
Asunto(s)
Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/genética , Familia , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Tamizaje Masivo/métodos , Adolescente , Niño , Preescolar , Femenino , Estudios de Seguimiento , Pruebas Genéticas/tendencias , Humanos , Lactante , Recién Nacido , Masculino , Tamizaje Masivo/tendencias , Estudios RetrospectivosRESUMEN
BACKGROUND: The genetic cause of hypertrophic cardiomyopathy remains unexplained in a substantial proportion of cases. Formin homology 2 domain containing 3 (FHOD3) may have a role in the pathogenesis of cardiac hypertrophy but has not been implicated in hypertrophic cardiomyopathy. OBJECTIVES: This study sought to investigate the relation between FHOD3 mutations and the development of hypertrophic cardiomyopathy. METHODS: FHOD3 was sequenced by massive parallel sequencing in 3,189 hypertrophic cardiomyopathy unrelated probands and 2,777 patients with no evidence of cardiomyopathy (disease control subjects). The authors evaluated protein-altering candidate variants in FHOD3 for cosegregation, clinical characteristics, and outcomes. RESULTS: The authors identified 94 candidate variants in 132 probands. The variants' frequencies were significantly higher in patients with hypertrophic cardiomyopathy (74 of 3,189 [2.32%]) than in disease control subjects (18 of 2,777 [0.65%]; p < 0.001) or in the gnomAD database (1,049 of 138,606 [0.76%]; p < 0.001). FHOD3 mutations cosegregated with hypertrophic cardiomyopathy in 17 families, with a combined logarithm of the odds score of 7.92, indicative of very strong segregation. One-half of the disease-causing variants were clustered in a small conserved coiled-coil domain (amino acids 622 to 655); odds ratio for hypertrophic cardiomyopathy was 21.8 versus disease control subjects (95% confidence interval: 1.3 to 37.9; p < 0.001) and 14.1 against gnomAD (95% confidence interval: 6.9 to 28.7; p < 0.001). Hypertrophic cardiomyopathy patients carrying (likely) pathogenic mutations in FHOD3 (n = 70) were diagnosed after age 30 years (mean 46.1 ± 18.7 years), and two-thirds (66%) were males. Of the patients, 82% had asymmetric septal hypertrophy (mean 18.8 ± 5 mm); left ventricular ejection fraction <50% was present in 14% and hypertrabeculation in 16%. Events were rare before age 30 years, with an annual cardiovascular death incidence of 1% during follow-up. CONCLUSIONS: FHOD3 is a novel disease gene in hypertrophic cardiomyopathy, accounting for approximately 1% to 2% of cases. The phenotype and the rate of cardiovascular events are similar to those reported in unselected cohorts. The FHOD3 gene should be routinely included in hypertrophic cardiomyopathy genetic testing panels.