Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 626(8000): 881-890, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297124

RESUMEN

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas , Células-Madre Neurales , Neurogénesis , Neuronas , Adulto , Animales , Humanos , Ratones , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Factores de Tiempo , Transcripción Genética
2.
Nature ; 632(8024): 390-400, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048830

RESUMEN

Most cases of herpes simplex virus 1 (HSV-1) encephalitis (HSE) remain unexplained1,2. Here, we report on two unrelated people who had HSE as children and are homozygous for rare deleterious variants of TMEFF1, which encodes a cell membrane protein that is preferentially expressed by brain cortical neurons. TMEFF1 interacts with the cell-surface HSV-1 receptor NECTIN-1, impairing HSV-1 glycoprotein D- and NECTIN-1-mediated fusion of the virus and the cell membrane, blocking viral entry. Genetic TMEFF1 deficiency allows HSV-1 to rapidly enter cortical neurons that are either patient specific or derived from CRISPR-Cas9-engineered human pluripotent stem cells, thereby enhancing HSV-1 translocation to the nucleus and subsequent replication. This cellular phenotype can be rescued by pretreatment with type I interferon (IFN) or the expression of exogenous wild-type TMEFF1. Moreover, ectopic expression of full-length TMEFF1 or its amino-terminal extracellular domain, but not its carboxy-terminal intracellular domain, impairs HSV-1 entry into NECTIN-1-expressing cells other than neurons, increasing their resistance to HSV-1 infection. Human TMEFF1 is therefore a host restriction factor for HSV-1 entry into cortical neurons. Its constitutively high abundance in cortical neurons protects these cells from HSV-1 infection, whereas inherited TMEFF1 deficiency renders them susceptible to this virus and can therefore underlie HSE.


Asunto(s)
Encéfalo , Encefalitis por Herpes Simple , Herpesvirus Humano 1 , Proteínas de la Membrana , Internalización del Virus , Animales , Femenino , Humanos , Masculino , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/virología , Encefalitis por Herpes Simple/virología , Encefalitis por Herpes Simple/metabolismo , Herpesvirus Humano 1/patogenicidad , Herpesvirus Humano 1/fisiología , Homocigoto , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nectinas/genética , Nectinas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/virología , Células Madre Pluripotentes/citología , Replicación Viral , Preescolar , Adulto Joven , Linaje
3.
Curr Opin Genet Dev ; 85: 102164, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38412562

RESUMEN

During brain development, the sequence of developmental steps and the underlying transcriptional regulatory logic are largely conserved across species. However, the temporal unfolding of developmental programs varies dramatically across species and within a given species varies across brain regions and cell identities. The maturation of neurons in the human cerebral cortex is particularly slow and lasts for many years compared with only a few weeks for the corresponding mouse neurons. The mechanisms setting the 'schedule' of neuronal maturation remain unclear but appear to be linked to a cell-intrinsic 'clock'. Here, we discuss recent findings that highlight a role for epigenetic factors in the timing of neuronal maturation. Manipulations of those factors in stem cell-based models can override the intrinsic pace of neuronal maturation, including its protracted nature in human cortical neurons. We then contextualize the epigenetic regulation of maturation programs with findings from other model systems and propose potential interactions between epigenetic pathways and other drivers of developmental rates.


Asunto(s)
Epigénesis Genética , Neuronas , Ratones , Humanos , Animales , Neuronas/metabolismo , Regulación de la Expresión Génica , Encéfalo/fisiología , Neurogénesis/genética
4.
Cell Stem Cell ; 31(8): 1162-1174.e8, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917806

RESUMEN

Aging is the biggest risk factor for the development of Alzheimer's disease (AD). Here, we performed a whole-genome CRISPR screen to identify regulators of neuronal age and show that the neddylation pathway regulates both cellular age and AD neurodegeneration in a human stem cell model. Specifically, we demonstrate that blocking neddylation increased cellular hallmarks of aging and led to an increase in Tau aggregation and phosphorylation in neurons carrying the APPswe/swe mutation. Aged APPswe/swe but not isogenic control neurons also showed a progressive decrease in viability. Selective neuronal loss upon neddylation inhibition was similarly observed in other isogenic AD and in Parkinson's disease (PD) models, including PSENM146V/M146V cortical and LRRK2G2019S/G2019S midbrain dopamine neurons, respectively. This study indicates that cellular aging can reveal late-onset disease phenotypes, identifies new potential targets to modulate AD progression, and describes a strategy to program age-associated phenotypes into stem cell models of disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Senescencia Celular/genética , Neuronas/metabolismo , Neuronas/patología , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Sistemas CRISPR-Cas/genética
5.
Nat Biotechnol ; 42(10): 1515-1525, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38168993

RESUMEN

The maturation of human pluripotent stem cell (hPSC)-derived neurons mimics the protracted timing of human brain development, extending over months to years for reaching adult-like function. Prolonged in vitro maturation presents a major challenge to stem cell-based applications in modeling and treating neurological disease. Therefore, we designed a high-content imaging assay based on morphological and functional readouts in hPSC-derived cortical neurons which identified multiple compounds that drive neuronal maturation including inhibitors of lysine-specific demethylase 1 and disruptor of telomerase-like 1 and activators of calcium-dependent transcription. A cocktail of four factors, GSK2879552, EPZ-5676, N-methyl-D-aspartate and Bay K 8644, collectively termed GENtoniK, triggered maturation across all parameters tested, including synaptic density, electrophysiology and transcriptomics. Maturation effects were further validated in cortical organoids, spinal motoneurons and non-neural lineages including melanocytes and pancreatic ß-cells. The effects on maturation observed across a broad range of hPSC-derived cell types indicate that some of the mechanisms controlling the timing of human maturation might be shared across lineages.


Asunto(s)
Diferenciación Celular , Neuronas , Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Diferenciación Celular/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
6.
Nat Commun ; 15(1): 7611, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218970

RESUMEN

The development of functional neurons is a complex orchestration of multiple signaling pathways controlling cell proliferation and differentiation. Because the balance of antioxidants is important for neuronal survival and development, we hypothesized that ferroptosis must be suppressed to gain neurons. We find that removal of antioxidants diminishes neuronal development and laminar organization of cortical organoids, which is fully restored when ferroptosis is inhibited by ferrostatin-1 or when neuronal differentiation occurs in the presence of vitamin A. Furthermore, iron-overload-induced developmental growth defects in C. elegans are ameliorated by vitamin E and A. We determine that all-trans retinoic acid activates the Retinoic Acid Receptor, which orchestrates the expression of anti-ferroptotic genes. In contrast, retinal and retinol show radical-trapping antioxidant activity. Together, our study reveals an unexpected function of vitamin A in coordinating the expression of essential cellular gatekeepers of ferroptosis, and demonstrates that suppression of ferroptosis by radical-trapping antioxidants or by vitamin A is required to obtain mature neurons and proper laminar organization in cortical organoids.


Asunto(s)
Antioxidantes , Caenorhabditis elegans , Ferroptosis , Neuronas , Vitamina A , Animales , Ferroptosis/efectos de los fármacos , Vitamina A/farmacología , Vitamina A/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Antioxidantes/farmacología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/citología , Ciclohexilaminas/farmacología , Diferenciación Celular/efectos de los fármacos , Vitamina E/farmacología , Receptores de Ácido Retinoico/metabolismo , Receptores de Ácido Retinoico/genética , Tretinoina/farmacología , Organoides/efectos de los fármacos , Organoides/metabolismo , Neurogénesis/efectos de los fármacos , Ratones , Humanos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Transducción de Señal/efectos de los fármacos , Fenilendiaminas
7.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583153

RESUMEN

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Asunto(s)
Diferenciación Celular , Ventrículos Laterales , Factor Inhibidor de Leucemia , Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citología , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Factor de Transcripción STAT3/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Transducción de Señal
8.
bioRxiv ; 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36824730

RESUMEN

Mammalian outer radial glia (oRG) emerge as cortical progenitor cells that directly support the development of an enlarged outer subventricular zone (oSVZ) and, in turn, the expansion of the neocortex. The in vitro generation of oRG is essential to model and investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 pathway using LIF, which is not produced in guided cortical organoids, we developed a cerebral organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The structured oSVZ is composed of progenitor cells expressing specific oRG markers such as GFAP, LIFR, HOPX , which closely matches human oRG in vivo . In this microenvironment, cortical neurons showed faster maturation with enhanced metabolic and functional activity. Incorporation of hPSC-derived brain vascular LIF- producing pericytes in cerebral organoids mimicked the effects of LIF treatment. These data indicate that the cellular complexity of the cortical microenvironment, including cell-types of the brain vasculature, favors the appearance of oRG and provides a platform to routinely study oRG in hPSC-derived brain organoids.

9.
J Neurosci ; 31(32): 11678-91, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832197

RESUMEN

Focal adhesion kinase (FAK) is an intracellular kinase and scaffold protein that regulates migration in many different cellular contexts but whose function in neuronal migration remains controversial. Here, we have analyzed the function of FAK in two populations of neurons with very distinct migratory behaviors: cortical interneurons, which migrate tangentially and independently of radial glia; and pyramidal cells, which undergo glial-dependent migration. We found that FAK is dispensable for glial-independent migration but is cell-autonomously required for the normal interaction of pyramidal cells with radial glial fibers. Loss of FAK function disrupts the normal morphology of migrating pyramidal cells, delays migration, and increases the tangential dispersion of neurons arising from the same radial unit. FAK mediates this process by regulating the assembly of Connexin-26 contact points in the membrane of migrating pyramidal cells. These results indicate that FAK plays a fundamental role in the dynamic regulation of Gap-mediated adhesions during glial-guided neuronal migration in the mouse.


Asunto(s)
Movimiento Celular/fisiología , Conexinas/fisiología , Quinasa 1 de Adhesión Focal/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Animales , Células COS , Pollos , Chlorocebus aethiops , Conexina 26 , Femenino , Ratones , Ratones Mutantes , Neuronas/citología , Técnicas de Cultivo de Órganos , Embarazo
10.
Cell Stem Cell ; 28(9): 1566-1581.e8, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33951478

RESUMEN

The biological function and disease association of human endogenous retroviruses (HERVs) are largely elusive. HERV-K(HML-2) has been associated with neurotoxicity, but there is no clear understanding of its role or mechanistic basis. We addressed the physiological functions of HERV-K(HML-2) in neuronal differentiation using CRISPR engineering to activate or repress its expression levels in a human-pluripotent-stem-cell-based system. We found that elevated HERV-K(HML-2) transcription is detrimental for the development and function of cortical neurons. These effects are cell-type-specific, as dopaminergic neurons are unaffected. Moreover, high HERV-K(HML-2) transcription alters cortical layer formation in forebrain organoids. HERV-K(HML-2) transcriptional activation leads to hyperactivation of NTRK3 expression and other neurodegeneration-related genes. Direct activation of NTRK3 phenotypically resembles HERV-K(HML-2) induction, and reducing NTRK3 levels in context of HERV-K(HML-2) induction restores cortical neuron differentiation. Hence, these findings unravel a cell-type-specific role for HERV-K(HML-2) in cortical neuron development.


Asunto(s)
Retrovirus Endógenos , Diferenciación Celular , Humanos , Activación Transcripcional
11.
Nat Neurosci ; 24(3): 343-354, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33558694

RESUMEN

Aberrant inflammation in the CNS has been implicated as a major player in the pathogenesis of human neurodegenerative disease. We developed a new approach to derive microglia from human pluripotent stem cells (hPSCs) and built a defined hPSC-derived tri-culture system containing pure populations of hPSC-derived microglia, astrocytes, and neurons to dissect cellular cross-talk along the neuroinflammatory axis in vitro. We used the tri-culture system to model neuroinflammation in Alzheimer's disease with hPSCs harboring the APPSWE+/+ mutation and their isogenic control. We found that complement C3, a protein that is increased under inflammatory conditions and implicated in synaptic loss, is potentiated in tri-culture and further enhanced in APPSWE+/+ tri-cultures due to microglia initiating reciprocal signaling with astrocytes to produce excess C3. Our study defines the major cellular players contributing to increased C3 in Alzheimer's disease and presents a broadly applicable platform to study neuroinflammation in human disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Complemento C3/metabolismo , Microglía/metabolismo , Células Madre Pluripotentes/patología , Enfermedad de Alzheimer/patología , Astrocitos/metabolismo , Astrocitos/patología , Hematopoyesis/fisiología , Humanos , Inflamación/metabolismo , Inflamación/patología , Microglía/patología , Modelos Biológicos , Neuronas/metabolismo , Neuronas/patología
12.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33393505

RESUMEN

Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism is thought to involve impaired IFN-α/ß induction by the TLR3 recognition of dsRNA viral intermediates or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive IFN-ß protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. Tlr3-/- mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-ß secretion and ISG mRNA in induced pluripotent stem cell-derived cortical neurons. Consistently, TLR3-deficient human fibroblasts and cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human CNS prevents infection by HSV-1 in vivo, is therefore based on the control of early viral infection by basal IFN-ß immunity.


Asunto(s)
Corteza Cerebral/inmunología , Fibroblastos/inmunología , Herpesvirus Humano 1/inmunología , Interferón beta/inmunología , Neuronas/inmunología , Receptor Toll-Like 3/inmunología , Vesiculovirus/inmunología , Animales , Línea Celular , Corteza Cerebral/patología , Corteza Cerebral/virología , Fibroblastos/patología , Fibroblastos/virología , Humanos , Interferón beta/genética , Ratones , Ratones Noqueados , Neuronas/patología , Neuronas/virología , Receptor Toll-Like 3/genética
13.
FASEB J ; 23(5): 1347-57, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19126596

RESUMEN

Rac GTPases are members of the Rho family regulating the actin cytoskeleton and implicated in neuronal development. Ubiquitous Rac1 and neuron-specific Rac3 GTPases are coexpressed in the developing mammalian brain. We used Cre-mediated conditional deletion of Rac1 in neurons combined with knockout of neuron-specific Rac3 to study the role of these GTPases in neural development. We found that lack of both genes causes motor behavioral defects, epilepsy, and premature death of mice. Deletion of either GTPase does not produce evident phenotypes. Double-knockout mice show specific defects in the development of the hippocampus. Selective impairment of the dorsal hilus of double-knockout animals is associated with alteration in the formation of the hippocampal circuitry. Axonal pathways to and from the dorsal hilus are affected because of the deficit of hilar mossy cells. Moreover, analysis of Rac function in hippocampal cultures shows that spine formation is strongly hampered only in neurons lacking both Rac proteins. These findings show for the first time that both Rac1 and Rac3 are important for the development of the nervous system, wherein they play complementary roles during late stages of neuronal and brain development.


Asunto(s)
Neurogénesis/fisiología , Proteínas de Unión al GTP rac/fisiología , Proteína de Unión al GTP rac1/fisiología , Animales , Apoptosis/fisiología , Espinas Dendríticas/fisiología , Giro Dentado/fisiología , Giro Dentado/ultraestructura , Hipocampo/citología , Hipocampo/embriología , Ratones , Ratones Noqueados , Neuronas/citología , Transgenes/fisiología
14.
Cell Stem Cell ; 27(1): 125-136.e7, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32579880

RESUMEN

SARS-CoV-2 has caused the COVID-19 pandemic. There is an urgent need for physiological models to study SARS-CoV-2 infection using human disease-relevant cells. COVID-19 pathophysiology includes respiratory failure but involves other organ systems including gut, liver, heart, and pancreas. We present an experimental platform comprised of cell and organoid derivatives from human pluripotent stem cells (hPSCs). A Spike-enabled pseudo-entry virus infects pancreatic endocrine cells, liver organoids, cardiomyocytes, and dopaminergic neurons. Recent clinical studies show a strong association with COVID-19 and diabetes. We find that human pancreatic beta cells and liver organoids are highly permissive to SARS-CoV-2 infection, further validated using adult primary human islets and adult hepatocyte and cholangiocyte organoids. SARS-CoV-2 infection caused striking expression of chemokines, as also seen in primary human COVID-19 pulmonary autopsy samples. hPSC-derived cells/organoids provide valuable models for understanding the cellular responses of human tissues to SARS-CoV-2 infection and for disease modeling of COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Organoides/virología , Neumonía Viral/virología , Tropismo , Enzima Convertidora de Angiotensina 2 , Animales , Autopsia , COVID-19 , Línea Celular , Infecciones por Coronavirus/patología , Hepatocitos/patología , Hepatocitos/virología , Humanos , Células Madre Pluripotentes Inducidas/virología , Hígado/patología , Ratones , Páncreas/patología , Páncreas/virología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/patología , SARS-CoV-2 , Internalización del Virus
16.
J Comp Neurol ; 527(10): 1558-1576, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30520050

RESUMEN

Excitatory neurons of the cerebral cortex migrate radially from their place of birth to their final position in the cortical plate during development. Radially-migrating neurons display a single leading process that establishes the direction of movement. This leading process has been described as being unbranched, and the occurrence of branches proposed to impair radial migration. Here we have analyzed the detailed morphology of leading process in radially-migrating pyramidal neurons and its impact on radial migration. We have compared ferret and mouse to identify differences between cortices that undergo folding or not. In mouse, we find that half of radially-migrating neurons exhibit a branched leading process, this being even more frequent in ferret. Branched leading processes are less parallel to radial glia fibers than those unbranched, suggesting some independence from radial glia fibers. Two-photon videomicroscopy revealed that a vast majority of neurons branch their leading process at some point during radial migration, but this does not reduce their migration speed. We have tested the functional impact of exuberant leading process branching by expressing a dominant negative Cdk5. We confirm that loss of Cdk5 function significantly impairs radial migration, but this is independent from increased branching of the leading process. We propose that excitatory neurons may branch their leading process as an evolutionary mechanism to allow cells changing their trajectory of migration to disperse laterally, such that increased branching in gyrencephalic species favors the tangential dispersion of radially-migrating neurons, and cortical folding.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/embriología , Neurogénesis/fisiología , Células Piramidales/fisiología , Animales , Hurones , Ratones
17.
Elife ; 82019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31736464

RESUMEN

The cerebral cortex contains multiple areas with distinctive cytoarchitectonic patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have investigated the neuronal output of individual progenitor cells in the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. Our experimental results indicate that progenitor cells generate pyramidal cell lineages with a wide range of sizes and laminar configurations. Mathematical modeling indicates that these outcomes are compatible with a stochastic model of cortical neurogenesis in which progenitor cells undergo a series of probabilistic decisions that lead to the specification of very heterogeneous progenies. Our findings support a mechanism for cortical neurogenesis whose flexibility would make it capable to generate the diverse cytoarchitectures that characterize distinct neocortical areas.


Asunto(s)
Diferenciación Celular , Neocórtex/embriología , Neurogénesis , Células Piramidales/citología , Células Piramidales/fisiología , Células Madre/fisiología , Animales , Ratones , Modelos Teóricos
18.
Cell Stem Cell ; 25(4): 514-530.e8, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31543366

RESUMEN

Cellular senescence is a mechanism used by mitotic cells to prevent uncontrolled cell division. As senescent cells persist in tissues, they cause local inflammation and are harmful to surrounding cells, contributing to aging. Generally, neurodegenerative diseases, such as Parkinson's, are disorders of aging. The contribution of cellular senescence to neurodegeneration is still unclear. SATB1 is a DNA binding protein associated with Parkinson's disease. We report that SATB1 prevents cellular senescence in post-mitotic dopaminergic neurons. Loss of SATB1 causes activation of a cellular senescence transcriptional program in dopamine neurons both in human stem cell-derived dopaminergic neurons and in mice. We observed phenotypes that are central to cellular senescence in SATB1 knockout dopamine neurons in vitro and in vivo. Moreover, we found that SATB1 directly represses expression of the pro-senescence factor p21 in dopaminergic neurons. Our data implicate senescence of dopamine neurons as a contributing factor in the pathology of Parkinson's disease.


Asunto(s)
Envejecimiento/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Neuronas Dopaminérgicas/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Células Cultivadas , Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Represión Epigenética , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Noqueados , Mitosis , Enfermedad de Parkinson/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA