Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Electrophoresis ; 45(1-2): 8-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37603373

RESUMEN

This work presents a revision of the main applications of capillary electromigration (CE) methods in food analysis and Foodomics. Papers that were published during the period March 2021 to March 2023 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods and beverages. Namely, CE methods have been applied to analyze amino acids, biogenic amines, heterocyclic amines, peptides, proteins, phenols, polyphenols, pigments, lipids, carbohydrates, vitamins, DNAs, contaminants, toxins, pesticides, additives, residues, small organic and inorganic compounds, and other minor compounds. In addition, new CE procedures to perform chiral separation and for evaluating the effects of food processing as well as the last developments of microchip CE and new applications in Foodomics will be also discussed. The new procedures of CE to investigate food quality and safety, nutritional value, storage, and bioactivity are also included in the present review work.


Asunto(s)
Electroforesis Capilar , Análisis de los Alimentos , Análisis de los Alimentos/métodos , Electroforesis Capilar/métodos , Calidad de los Alimentos , Polifenoles , Vitaminas/análisis , Aminas
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612712

RESUMEN

Tetraselmis chuii is an EFSA-approved novel food and dietary supplement with increasing use in nutraceutical production worldwide. This study investigated the neuroprotective potential of bioactive compounds extracted from T. chuii using green biobased solvents (ethyl acetate, AcOEt, and cyclopentyl methyl ether, CPME) under pressurized liquid extraction (PLE) conditions and supercritical fluid extraction (SFE). Response surface optimization was used to study the effect of temperature and solvent composition on the neuroprotective properties of the PLE extracts, including anticholinergic activity, reactive oxygen/nitrogen species (ROS/RNS) scavenging capacity, and anti-inflammatory activity. Optimized extraction conditions of 40 °C and 34.9% AcOEt in CPME resulted in extracts with high anticholinergic and ROS/RNS scavenging capacity, while operation at 180 °C and 54.1% AcOEt in CPME yielded extracts with potent anti-inflammatory properties using only 20 min. Chemical characterization revealed the presence of carotenoids (neoxanthin, violaxanthin, zeaxanthin, α- and ß-carotene) known for their anti-cholinesterase, antioxidant, and anti-inflammatory potential. The extracts also exhibited high levels of omega-3 polyunsaturated fatty acids (PUFAs) with a favorable ω-3/ω-6 ratio (>7), contributing to their neuroprotective and anti-inflammatory effects. Furthermore, the extracts were found to be safe to use, as cytotoxicity assays showed no observed toxicity in HK-2 and THP-1 cell lines at or below a concentration of 40 µg mL-1. These results highlight the neuroprotective potential of Tetraselmis chuii extracts, making them valuable in the field of nutraceutical production and emphasize the interest of studying new green solvents as alternatives to conventional toxic solvents.


Asunto(s)
Chlorophyta , Ácidos Grasos Omega-3 , Microalgas , Especies Reactivas de Oxígeno , Antagonistas Colinérgicos , Suplementos Dietéticos , Antiinflamatorios/farmacología , Solventes
3.
Molecules ; 28(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446660

RESUMEN

Graphene oxide sheets fixed over silica particles (SiGO) and their modification functionalized with C18 and endcapped (SiGO-C18ec) have been reported as sorbents for extraction and analytical columns in LC. In this study, a SiGO column was selected as the extraction column and a SiGO-C18ec as the analytical column to study the applicability and limitations of a column-switching system composed exclusively of columns packed with graphene-based sorbents. Pyriproxyfen and abamectin B1a were selected as the analytes, and orange-flavored carbonated soft drinks as the matrix. The proposed system could be successfully applied to the pyriproxyfen analysis in a concentration range between 0.5 to 25 µg/mL presenting a linearity of R2 = 0.9931 and an intra-day and inter-day accuracy of 82.2-111.4% (RSD < 13.3%) and 95.5-99.8% (RSD < 12.7%), respectively. Furthermore, the matrix composition affected the area observed for the pyriproxyfen: the higher the concentration of orange juice in the soft drink, the higher the pyriproxyfen the signal observed. Additionally, the SiGO extraction column presented a life use of 120 injections for this matrix. In contrast, the proposed system could not apply to the analysis of abamectin B1a, and the SiGO-C18ec analytical column presented significant tailing compared to a similar approach with a C18 analytical column.


Asunto(s)
Grafito , Dióxido de Silicio , Ivermectina
4.
Electrophoresis ; 43(1-2): 37-56, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473359

RESUMEN

This work presents a revision of the main applications of capillary electromigration methods in food analysis and Foodomics. Articles that were published during the period February 2019-February 2021 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods. Namely, CE methods have been applied to analyze amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, secondary metabolites, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. The last results on the use of CE for monitoring food interactions and food processing, including recent microchips developments and new applications of CE in Foodomics, are discussed too. The new procedures of CE to investigate food quality and safety, nutritional value, storage and bioactivity are also included in the present review work.


Asunto(s)
Electroforesis Capilar , Análisis de los Alimentos , Aditivos Alimentarios/análisis , Calidad de los Alimentos
5.
Anal Bioanal Chem ; 414(18): 5357-5371, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34923590

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia caused by a progressive loss of neurons from different regions of the brain. This multifactorial pathophysiology has been widely characterized by neuroinflammation, extensive oxidative damage, synaptic loss, and neuronal cell death. In this sense, the design of multi-target strategies to prevent or delay its progression is a challenging goal. In the present work, different in vitro assays including antioxidant, anti-inflammatory, and anti-cholinergic activities of a carotenoid-enriched extract from Dunaliella salina microalgae obtained by supercritical fluid extraction are studied. Moreover, its potential neuroprotective effect in the human neuron-like SH-SY5Y cell model against remarkable hallmarks of AD was also evaluated. In parallel, a comprehensive metabolomics study based on the use of charged-surface hybrid chromatography (CSH) and hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry (Q-TOF MS/MS) was applied to evaluate the effects of the extract on the metabolism of the treated cells. The use of advanced bioinformatics and statistical tools allowed the identification of more than 314 metabolites in SH-SY5Y cells, of which a great number of phosphatidylcholines, triacylglycerols, and fatty acids were significantly increased, while several phosphatidylglycerols were decreased, compared to controls. These lipidomic changes in cells along with the possible role exerted by carotenoids and other minor compounds on the cell membrane might explain the observed neuroprotective effect of the D. salina extract. However, future experiments using in vivo models to corroborate this hypothesis must be carried out.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Alzheimer/tratamiento farmacológico , Carotenoides/química , Carotenoides/farmacología , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613976

RESUMEN

Agrifood by-products and microalgae represent a low-cost and valuable source of bioactive compounds with neuroprotective properties. However, the neuroprotective effectiveness of therapeutic molecules can be limited by their capacity to cross the blood-brain barrier (BBB) and reach the brain. In this research, various green extracts from Robinia pseudoacacia (ASFE), Cyphomandra betacea (T33), Coffea arabica (PPC1), Olea europaea L., (OL-SS), Citrus sinensis (PLE100) by-products and from the microalgae Dunaliella salina (DS) that have demonstrated in vitro neuroprotective potential were submitted to an in vitro BBB permeability and transport assay based on an immortalized human brain microvascular endothelial cells (HBMEC) model. Toxicity and BBB integrity tests were performed, and the transport of target bioactive molecules across the BBB were evaluated after 2 and 4 h of incubation using gas and liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC/LC-Q-TOF-MS). The HBMEC-BBB transport assay revealed a high permeability of representative neuroprotective compounds, such as mono- and sesquiterpenoids, phytosterols and some phenolic compounds. The obtained results from the proposed in vitro BBB cellular model provide further evidence of the neuroprotective potential of the target natural extracts, which represent a promising source of functional ingredients to be transferred into food supplements, food additives, or nutraceuticals with scientifically supported neuroprotective claims.


Asunto(s)
Barrera Hematoencefálica , Microalgas , Humanos , Células Endoteliales , Encéfalo/irrigación sanguínea , Cromatografía de Gases y Espectrometría de Masas/métodos
7.
Int J Mol Sci ; 22(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200696

RESUMEN

Passiflora edulis by-products (PFBP) are a rich source of polyphenols, of which piceatannol has gained special attention recently. However, there are few studies involving environmentally safe methods for obtaining extracts rich in piceatannol. This work aimed to concentrate piceatannol from defatted PFBP (d-PFBP) by means of pressurized liquid extraction (PLE) and conventional extraction, using the bio-based solvents selected with the Hansen solubility parameters approach. The relative energy distance (Ra) between solvent and solute was: Benzyl Alcohol (BnOH) < Ethyl Acetate (EtOAc) < Ethanol (EtOH) < EtOH:H2O. Nonetheless, EtOH presented the best selectivity for piceatannol. Multi-cycle PLE at 110 °C was able to concentrate piceatannol 2.4 times more than conventional extraction. PLE exhibited a dependence on kinetic parameters and temperature, which could be associated with hydrogen bonding forces and the dielectric constant of the solvents. The acetylcholinesterase (AChE) and lipoxygenase (LOX) IC50 were 29.420 µg/mL and 27.682 µg/mL, respectively. The results reinforce the demand for processes to concentrate natural extracts from food by-products.


Asunto(s)
Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Lipooxigenasa/química , Passiflora/química , Extractos Vegetales/farmacología , Frutas/química , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Semillas/química , Solventes/química
8.
Plant Foods Hum Nutr ; 76(3): 319-325, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34264453

RESUMEN

Rosemary (Rosmarinus officinalis) is a culinary and medicinal plant used in food and pharmaceutical industry. The wide range of biological activities is mainly related to phenolic and terpenic compounds; like carnosic acid (CA), carnosol (CS) and rosmarinic acid (RA), mainly reported in rosemary leaf extracts, and recently described in rosemary callus extracts. The aim of this work was to investigate the chemical profile of rosemary cell lines and evaluate their antiproliferative potential against human HT-29 colorectal cancer cell lines. For this purpose, rosemary leaf explants were dedifferentiated on MS medium and added with 2, 4-D (2, 4-dichlorophenoxyacetic acid; 2 mg/L) and BAP (6-benzylaminopurine; 2 mg/L). Cell aggregates were separated according to colour and three rosemary cell lines cultures were established: green (RoG), yellow (RoY) and white (RoW). The chemical profile of rosemary cell lines extracts was characterized by combining HPLC and GC platforms coupled to HR-MS/MS. The antiproliferative activity against HT-29 cell line was analyzed with MTT assay. A total of 71 compounds, including hydroxycinnamic acid and hydroxybenzoic acid derivatives, flavonoids, phenolic di- and triterpenes, as well as relevant unsaturated fatty acids and their esters, phytosterols, and carotenoids were tentatively identified in the extract of the target cell lines. The antiproliferative activity test against HT-29 cell using the MTT assay revealed that the viability of HT-29 colon cancer cells was affected after treatment with the RoW extract (IC50 of 49.63 µg/mL) at 48 h. These results showed that rosemary cell lines can also accumulate other bioactive phytochemicals with demonstrated antiproliferative potential.


Asunto(s)
Neoplasias del Colon , Rosmarinus , Cromatografía Líquida de Alta Presión , Neoplasias del Colon/tratamiento farmacológico , Células HT29 , Humanos , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem
9.
Electrophoresis ; 41(20): 1776-1783, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31267584

RESUMEN

Rosmarinus officinalis L. (Lamiaceae) is an aromatic plant widely popular mainly due to its uses in traditional medicine as an anti-inflammatory, diuretic and antimicrobial, as well as in the prevention and treatment of diseases. These biological activities are mainly related to the presence of phenolic and terpenic compounds. This work reports a chemical profile analysis of extracts from leaves and calli of rosemary obtained by both pressurized liquid extraction and maceration. Chemical profiles were determined on calli extracts of 3, 6, 9, and 15 days of culture; chemical characterization and quantification of compounds was carried out using ultrahigh performance liquid chromatography-mass spectrometry. A total of 53 metabolites were identified in callus and 47 compounds in leaf extracts, of which 25 correspond to phenolic compounds, mainly flavonoids and flavones, 13 terpenes that include phenolic terpenes and one diterpenolactone, two glycosides which correspond to 6-O-caffeoyl-ß-D-fructofuranosil-(2→1)-α-D-glucopyranoside and primulaverin, an aromatic compound identified as fenantrenone and a growth regulator 12-hydroxy jasmonic acid. These results showed that undifferentiated rosemary cells accumulate the same compounds identified mainly in highly specialized tissues such as leaves. The plant cell culture supply the possibility of developing biotechnological processes to obtain compounds of commercial interest.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Extractos Vegetales/química , Hojas de la Planta/química , Rosmarinus/química , Cinamatos/análisis , Cinamatos/química , Depsidos/análisis , Depsidos/química , Flavonoides/análisis , Flavonoides/química , Glicósidos/análisis , Glicósidos/química , Terpenos/análisis , Terpenos/química , Ácido Rosmarínico
10.
Trends Analyt Chem ; 129: 115942, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32834241

RESUMEN

Many natural compounds, found mainly in plants, are associated with the treatment of various diseases. The search for natural therapeutic agents includes compounds with antiviral and anti-inflammatory activities. Among the many steps involved in bioprospection, extraction is the first and most critical step for obtaining bioactive compounds. One of the main advantages of using compressed fluids extraction is the high quality of the final product obtained due to the use of green solvents, while the selectivity towards target compounds can be tuned by adjusting the process parameters, especially pressure, temperature and solvent characteristics. In this review, a discussion is provided on the power of compressed fluids, such as supercritical fluid extraction (SFE), pressurized liquid extraction (PLE) and subcritical water extraction (SWE) to obtain antiviral and anti-inflammatory compounds from natural sources. In addition, an adequate knowledge about the identity and quantity of the compounds present in the extract is essential to correlate biological activity with chemical composition. Phytochemical profiling tools used for identification and quantification of these bioactive natural compound are also discussed. It can be anticipated that after the current SARS-COV-2 pandemic, the search of new natural compounds with antiviral and anti-inflammatory activity will be a hot research topic, so, this review provides an overview on the technologies currently used that could help this research.

11.
Biomacromolecules ; 21(12): 5336-5344, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33259188

RESUMEN

Starch aerogels are attractive materials for biomedical applications because of their low density and high open porosity coupled with high surface areas. However, the lack of macropores in conventionally manufactured polysaccharide aerogels is a limitation to their use as scaffolds for regenerative medicine. Moreover, the stability under storage of polysaccharide aerogels is critical for biomedical purposes and scarcely studied so far. In this work, the induction of a new macropore population (1-2 µm) well integrated into the starch aerogel backbone was successfully achieved by the incorporation of zein as a porogen. The obtained dual-porous aerogels were evaluated in terms of composition as well as morphological, textural, and mechanical properties. Stability of aerogels upon storage mimicking the zone II (25 °C, 65% relative humidity) according to the International Council for Harmonization guideline of climatic conditions was checked after 1 and 3 months from morphological, physicochemical, and mechanical perspectives. Zein incorporation induced remarkable changes in the mechanical performance of the end aerogel products and showed a preventive effect on the morphological changes during the storage period.


Asunto(s)
Polisacáridos , Almidón , Composición de Medicamentos , Geles , Porosidad
12.
J Sep Sci ; 42(1): 243-257, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30156751

RESUMEN

In a previous review (Sánchez-Camargo et al., J. Sep. Sci. 40 (2017) 213-227), we discussed the application of on-line supercritical fluid extraction coupled to chromatographic techniques. This review includes an update of the most recent publications (from January 2016 till June 2018) on this topic, which employs advanced analytical techniques for extracting and identifying valuable analytes. Supercritical fluid extraction has been widely recognized as a green sample preparation technique, because it is efficient, environmentally friendly, powerful, and faster, offering the possibility of direct coupling to analytical instrumental techniques. Among those techniques, supercritical fluid chromatography has experienced an innovative progression in the last 10 years, and the most recent applications of supercritical fluid extraction are coupled to this advanced analytical tool. The general principles, both methodological and instrumental of on-line supercritical fluid extraction coupled to supercritical fluid chromatography are described here. Besides, applications of the mentioned coupling for analysing biological fluids, food, soil, and botanical samples are also presented and discussed. Finally, a brief description about the very recent on-line coupling of supercritical fluid extraction to ion mobility spectrometry is presented, as well as concluding remarks about the importance of using these coupled techniques in the near future.


Asunto(s)
Líquidos Corporales/química , Cromatografía con Fluido Supercrítico , Contaminantes Ambientales/análisis , Contaminación de Alimentos/análisis , Suelo/química , Humanos
13.
Mol Cell Proteomics ; 16(1): 8-22, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27834734

RESUMEN

Carnosic acid (CA) and carnosol (CS) are two structurally related diterpenes present in rosemary herb (Rosmarinus officinalis). Although several studies have demonstrated that both diterpenes can scavenge free radicals and interfere in cellular processes such as cell proliferation, they may not necessarily exert the same effects at the molecular level. In this work, a shotgun proteomics study based on stable isotope dimethyl labeling (DML) and nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) has been performed to identify the relative changes in proteins and to gain some light on the specific molecular targets and mechanisms of action of CA and CS in HT-29 colon cancer cells. Protein profiles revealed that CA and CS induce different Nrf2-mediated response. Furthermore, examination of our data revealed that each diterpene affects protein homeostasis by different mechanisms. CA treatment induces the expression of proteins involved in the unfolded protein response in a concentration dependent manner reflecting ER stress, whereas CS directly inhibits chymotrypsin-like activity of the 20S proteasome. In conclusion, the unbiased proteomics-wide method applied in the present study has demonstrated to be a powerful tool to reveal differences on the mechanisms of action of two related bioactive compounds in the same biological model.


Asunto(s)
Abietanos/farmacología , Cromatografía Liquida/métodos , Neoplasias del Colon/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Homeostasis/efectos de los fármacos , Humanos , Marcaje Isotópico , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
14.
Molecules ; 24(8)2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-31009991

RESUMEN

As the interest in biorefinery approaches is continuously increasing, new alternatives for the downstream valorization of biomasses are sought. Porphyridium cruentum microalga is a good natural source for a variety of interesting bioactive compounds, including carotenoids, phycoerythrin, and sulfated polysaccharides. In the present contribution, the use of compressed fluids-based techniques is explored towards the efficient and green extraction of bioactive compounds to valorize microalgal biomass. The extraction of carotenoids was first optimized using pressurized ethanol. The best extraction conditions involved the use of 125 °C for 20 min at 10.5 MPa. Subsequently, a sequential valorization process was devised based on the application of different steps directed towards the extraction of phycoerythrin, sulfated polysaccharides, and carotenoids, respectively. The applied pressurized conditions allowed the attainment of a good recovery of polar components without compromising the stability and extraction of carotenoids. Therefore, the proposed approach could be employed to obtain different bioactives from P. cruentum microalgal biomass employing green extraction processes.


Asunto(s)
Biomasa , Tecnología Química Verde , Porphyridium/química , Porphyridium/aislamiento & purificación , Carotenoides/química , Carotenoides/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Extracción Líquido-Líquido , Espectrometría de Masas , Microalgas
15.
Electrophoresis ; 39(13): 1673-1682, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29314152

RESUMEN

Pressurized liquid extraction (PLE) has been used for the first time in this work to extract phenolic compounds from Goji berries according to a multilevel factorial design using response surface methodology. The global yield (% w/dw, weight/dry-weight), total phenolic content (TPC), total flavonoid (TF) and antioxidant activity (determined via ABTS assay, expressed as TEAC value) were used as response variables to study the effects of temperature (50-180°C) and green solvent composition (mixtures of ethanol/water). Phenolic compounds characterization was performed by high performance liquid chromatography-diode array detector-tandem mass spectrometry (HPLC-DAD-MS/MS). The optimum PLE conditions predicted by the model were as follows: 180°C and 86% ethanol in water with a good desirability value of 0.815. The predicted conditions were confirmed experimentally and once the experimental design was validated for commercial fruit samples, the PLE extraction of phenolic compounds from three different varieties of fruit samples (Selvatico mongolo, Bigol, and Polonia) was performed. Nine phenolic compounds were tentatively identified in these extracts, including phenolic acids and their derivatives, and flavonols. The optimized PLE conditions were compared to a conventional solid-liquid extraction, demonstrating that PLE is a useful alternative to extract phenolic compounds from Goji berry.


Asunto(s)
Antioxidantes/química , Lycium/química , Fenoles/química , Flavonoides/química , Frutas/química , Hidroxibenzoatos/química , Extracción en Fase Sólida
16.
Electrophoresis ; 39(1): 136-159, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28975648

RESUMEN

This review work presents and discusses the main applications of capillary electromigration methods in food analysis and Foodomics. Papers that were published during the period February 2015-February 2017 are included following the previous review by Acunha et al. (Electrophoresis 2016, 37, 111-141). The paper shows the large variety of food related molecules that have been analyzed by CE including amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. This work describes the last results on food quality and safety, nutritional value, storage, bioactivity, as well as uses of CE for monitoring food interactions and food processing including recent microchips developments and new applications of CE in Foodomics.


Asunto(s)
Electroforesis Capilar/métodos , Análisis de los Alimentos/métodos , Animales , Aditivos Alimentarios/análisis , Manipulación de Alimentos , Calidad de los Alimentos , Humanos , Procedimientos Analíticos en Microchip/métodos
17.
Electrophoresis ; 2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29569730

RESUMEN

Due to its significant amount of antioxidants, durum wheat (Triticum turgidum ssp. durum) could potentially contribute to the protection against a number of chronic diseases, such as diabetes, cardiovascular disease, and cancer. The increasing interest toward healthy food among both consumers and scientists has moved the focus toward the phytochemical content of whole wheat grains. The aim of this study was to identify the phytochemical composition of 22 cultivars belonging to old and modern durum wheat genotypes, including antioxidant capacity (DPPH and FRAP tests). In addition, five phenolic acids involved in the vanillin biosynthesis pathway and in the defence mechanism of plants were screened using UHPLC-MS/MS. Remarkable quantitative differences in the amount of the five phenolic acids analysed (p < 0.05) were detected among the wheat genotypes investigated. Results showed that among the investigated phenolic compounds, trans-ferulic acid was the most abundant, ranging from 13.28 to 324.69 µg/g; all the other identified compounds were present at lower concentrations. Moreover, significant differences on the antioxidant activity were observed. Collected data suggested possible differences between biosynthetic pathway of secondary metabolites among durum wheat genotypes.

18.
Electrophoresis ; 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29385268

RESUMEN

During the essential oil steam distillation from aromatic herbs, huge amounts of distillation wastewaters (DWWs) are generated. These by-products represent an exceptionally rich source of phenolic compounds such as rosmarinic acid (RA) and caffeic acid (CA). Herein, the alternative use of dried basil DWWs (dDWWs) to perform a selective extraction of RA and CA by pressurized liquid extraction (PLE) employing bio-based solvent was studied. To select the most suitable solvent for PLE, the theoretical modelling of Hansen solubility parameters (HSP) was carried out. This approach allows reducing the list of candidate to two solvents: ethanol and ethyl lactate. Due to the composition of the sample, mixtures of water with those solvents were also tested. An enriched PLE extract in RA (23.90 ± 2.06 mg/g extract) with an extraction efficiency of 75.89 ± 16.03% employing a water-ethanol mixture 25:75 (% v/v) at 50°C was obtained. In the case of CA, a PLE extract with 2.42 ± 0.04 mg/g extract, having an extraction efficiency of 13.86 ± 4.96% using ethanol absolute at 50°C was achieved. DWWs are proposed as new promising sources of natural additives and/or functional ingredients for cosmetic, nutraceutical, and food applications.

19.
Electrophoresis ; 2018 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-29683520

RESUMEN

In the present work, the valorization of Nannochloropsis gaditana biomass is proposed within the concept of biorefinery. To this aim, high-pressure homogenization (HPH) was used to break down the strong cell wall and supercritical fluid extraction (SFE) with pure CO2 was applied as a first step to extract valuable compounds (such as non-polar lipids and pigments). Extraction of the remaining residue for the recovery of bioactive compounds was studied by means of an experimental design based on response surface methodology (RSM) employing pressurized liquid extraction (PLE) with green solvents such as water and ethanol. Optimum extract was achieved with pure ethanol at 170°C for 20 min, providing an important antioxidant capacity (0.72 ± 0.03 mmol trolox eq g-1 extract). Complete chemical characterization of the optimum extract was carried out by using different chromatographic methods such as reverse-phase high-performance liquid chromatography with diode array detection (RP-HPLC-DAD), normal-phase HPLC with evaporative light scattering detection (NP-HPLC-ELSD) and gas chromatography coupled to mass spectrometry detection (GC-MS); carotenoids (e.g. violaxanthin), chlorophylls and polar lipids were the main compounds observed while palmitoleic, palmitic, myristic acids and the polyunsaturated eicosapentanoic (EPA) acid were the predominant fatty acids in all PLE extracts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA