Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Eur Heart J ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865332

RESUMEN

BACKGROUND AND AIMS: Extracellular vesicles (EVs) secreted by cardiosphere-derived cells exert immunomodulatory effects through the transmission of small non-coding RNAs. METHODS: The mechanism and role of yREX3, a small Y RNA abundant in EVs in myocardial injury, was investigated. RESULTS: yREX3 attenuates cardiac ischaemic injury by selective DNA methylation. Synthetic yREX3 encapsulated in lipid nanoparticles triggers broad transcriptomic changes in macrophages, localizes to the nucleus, and mediates epigenetic silencing of protein interacting with C kinase-1 (Pick1) through methylation of upstream CpG sites. Moreover, yREX3 interacts with polypyrimidine tract binding protein 3 (PTBP3) to methylate the Pick1 gene locus in a DNA methyltransferase-dependent manner. Suppression of Pick1 in macrophages potentiates Smad3 signalling and enhances efferocytosis, minimizing heart necrosis in rats with myocardial infarction. Adoptive transfer of Pick1-deficient macrophages recapitulates the cardioprotective effects of yREX3 in vivo. CONCLUSIONS: These findings highlight the role of a small Y RNA mined from EVs with a novel gene-methylating mechanism.

2.
Nanomedicine ; 33: 102347, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33321216

RESUMEN

Primary cell therapy continues to face significant hurdles to therapeutic translation including the inherent variations that exist from donor to donor, batch to batch, and scale-up driven modifications to the manufacturing process. Cardiosphere-derived cells (CDCs) are stromal/progenitor cells with clinically demonstrated tissue reparative capabilities. Mechanistic investigations have identified canonical Wnt/ß-catenin signaling as a therapeutic potency marker, and THY1 (CD90) expression as inversely correlated with potency. Here we demonstrate that the cardiosphere formation process increases ß-catenin levels and enriches for therapeutic miR content in the extracellular vesicles of these cells, namely miR-146a and miR-22. We further find that loss of potency is correlated with impaired cardiosphere formation. Finally, our data show that small GSK3ß inhibitors including CHIR, and BIO and "pro-canonical Wnt" culturing conditions can rescue ß-catenin signaling and reduce CD90 expression. These findings identify strategies that could be used to maintain CDC potency and therapeutic consistency.


Asunto(s)
Benzamidas/química , Biomarcadores/metabolismo , Difenilamina/análogos & derivados , Glucógeno Sintasa Quinasas/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Antígenos Thy-1/genética , beta Catenina/metabolismo , Animales , Benzamidas/farmacología , Línea Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Difenilamina/química , Difenilamina/farmacología , Vesículas Extracelulares , Fibronectinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Corazón , Humanos , Ratones , MicroARNs , Antígenos Thy-1/metabolismo , Vía de Señalización Wnt
3.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30678240

RESUMEN

Cell therapy has been evaluated to enhance heart function after injury. Delivered cells mostly act via paracrine mechanisms, including secreted growth factors, cytokines, and vesicles, such as exosomes (Exo). Intramyocardial injection of cardiac-resident progenitor cells (CPC)-derived Exo reduced scarring and improved cardiac function after myocardial infarction in rats. Here, we explore a clinically relevant approach to enhance the homing process to cardiomyocytes (CM), which is crucial for therapeutic efficacy upon systemic delivery of Exo. By overexpressing exosomal CXCR4, we increased the efficacy of plasmatic injection of cardioprotective Exo-CPC by increasing their bioavailability to ischemic hearts. Intravenous injection of ExoCXCR4 significantly reduced infarct size and improved left ventricle ejection fraction at 4 weeks compared to ExoCTRL (p < 0.01). Hemodynamic measurements showed that ExoCXCR4 improved dp/dt min, as compared to ExoCTRL and PBS group. In vitro, ExoCXCR4 was more bioactive than ExoCTRL in preventing CM death. This in vitro effect was independent from SDF-1α, as shown by using AMD3100 as specific CXCR4 antagonist. We showed, for the first time, that systemic administration of Exo derived from CXCR4-overexpressing CPC improves heart function in a rat model of ischemia reperfusion injury These data represent a substantial step toward clinical application of Exo-based therapeutics in cardiovascular disease.


Asunto(s)
Exosomas/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Receptores CXCR4/metabolismo , Animales , Bencilaminas , Western Blotting , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Microscopía por Crioelectrón , Ciclamas , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Compuestos Heterocíclicos/uso terapéutico , Humanos , Masculino , Infarto del Miocardio/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/genética
4.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746093

RESUMEN

All approved RNA therapeutics require parenteral delivery. Here we demonstrate an orally bioavailable formulation wherein synthetic noncoding (nc) RNA, packaged into lipid nanoparticles, is loaded into casein-chitosan (C2) micelles. We used the C2 formulation to deliver TY1, a 24-nucleotide synthetic ncRNA which targets the DNA damage response pathway in macrophages. C2-formulated TY1 (TY1C2) efficiently packages and protects TY1 against degradative enzymes. In healthy mice, oral TY1C2 was well-tolerated and nontoxic. Oral TY1C2 exhibited disease-modifying bioactivity in 2 models of tissue injury: 1) rat myocardial infarction, where a single oral dose of TY1C2 was cardioprotective, on par with intravenously-delivered TY1; and 2) mouse acute lung injury, where a single dose of TY1C2 attenuated pulmonary inflammation. Mechanistic dissection revealed that TY1C2 is not absorbed into the systemic circulation but is, instead, taken up by intestinal macrophages, namely those of the lamina propria and Peyer's patches. This route of absorption may rationalize why an antisense oligonucleotide against Factor VII, which acts on hepatocytes, is not effective when administered in the C2 formulation. Thus, some (but not all) ncRNA drugs are bioavailable when delivered by mouth. Oral RNA delivery and uptake, relying on uptake via the gastrointestinal immune system, has broad-ranging therapeutic implications.

5.
Proteomics Clin Appl ; : e2300128, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38444254

RESUMEN

PURPOSE: Micropeptides are an emerging class of proteins that play critical roles in cell signaling. Here, we describe the discovery of a novel micropeptide, dubbed slitharin (Slt), in conditioned media from Cardiosphere-derived cells (CDCs), a therapeutic cardiac stromal cell type. EXPERIMENTAL DESIGN: We performed mass spectrometry of peptide-enriched fractions from the conditioned media of CDCs and a therapeutically inert cell type (human dermal fibrobasts). We then evaluated the therapeutic capacity of the candidate peptide using an in vitro model of cardiomyocyte injury and a rat model of myocardial infarction. RESULTS: We identified a novel 24-amino acid micropeptide (dubbed Slitharin [Slt]) with a non-canonical leucine start codon, arising from long intergenic non-coding (LINC) RNA 2099. Neonatal rat ventricular myocytes (NRVMs) exposed to Slt were protected from hypoxic injury in vitro compared to a vehicle or scrambled control. Transcriptomic analysis of cardiomyocytes exposed to Slt reveals cytoprotective capacity, putatively through regulation of stress-induced MAPK-ERK. Slt also exerted cardioprotective effects in rats with myocardial infarction as shown by reduced infarct size 48 h post-injury. Conclusions and clinical relavance: Thus, Slt is a non-coding RNA-derived micropeptide, identified in the extracellular space, with a potential cardioprotective function.

7.
J Extracell Biol ; 2(2): e73, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38938522

RESUMEN

Mounting evidence implicates extracellular vesicles (EVs) factors as mediators of cell therapy. Cardiosphere-derived cells are cardiac-derived cells with tissue reparative capacity. Activation of a downstream target of wnt/ß-catenin signalling, tryptophan 2,3 dioxygenase (TDO2) renders therapeutically inert skin fibroblasts cardioprotective. Here, we investigate the mechanism by which concentrated conditioned media from TDO2-augmented fibroblasts (TDO2-CCM) exert cardioprotective effects. TDO2-CCM is cardioprotective in a mouse model of MI compared to CCM from regular fibroblasts (HDF-CCM). Transcriptomic analysis of cardiac tissue at 24 h demonstrates broad suppression of inflammatory and cell stress markers in animals given TDO2-CCM compared to HDF-CCM or vehicle. Sequencing analysis of TDO2-EV RNA demonstrated abundance of a small Y-derived small RNA dubbed 'NT4'. Purification of TDO2-EVs by size-exclusion chromatography and RNAse protection assays demonstrated that NT4 is encapsulated inside EVs. Consistently with TDO2-CCM, macrophages exposed to NT4 showed suppression of the inflammatory and cell stress mediators, particularly p21/cdkn1a. NT4-depleted TDO2-CCM resulted in diminished immunomodulatory capacity. Finally, administration of NT4 alone was cardioprotective in an acute model of myocardial infarction. Taken together, these findings elucidate the mechanism by which TDO2 augmentation mediates potency in secreted EVs through enrichment of NT4 which suppresses upstream cell stress mediators including p21/cdkn1a.

8.
J Extracell Vesicles ; 11(1): e12178, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35005847

RESUMEN

Extracellular vesicles (EVs) are potent signalling mediators. Although interest in EV translation is ever-increasing, development efforts are hampered by the inability to reliably assess the uptake of EVs and their RNA cargo. Here, we establish a novel qPCR-based method for the detection of unmodified EVS using an RNA Tracer (DUST). In this proof-of-concept study we use a human-specific Y RNA-derived small RNA (YsRNA) we dub "NT4" that is enriched in cardiosphere-derived cell small EVs (CDC-sEVs). The assay is robust, sensitive, and reproducible. Intravenously administered CDC-sEVs accumulated primarily in the heart on a per mg basis. Cardiac injury enhanced EV uptake in the heart, liver, and brain. Inhibition of EV docking by heparin suppressed uptake variably, while inhibition of endocytosis attenuated uptake in all organs. In vitro, EVs were uptaken more efficiently by macrophages, endothelial cells, and cardiac fibroblasts compared to cardiomyocytes. These findings demonstrate the utility of DUST to assess uptake of EVs in vivo and in vitro.


Asunto(s)
Vesículas Extracelulares/metabolismo , Miocardio/metabolismo , ARN Pequeño no Traducido/metabolismo , Animales , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Lesiones Cardíacas/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Miocardio/citología , Miocitos Cardíacos/metabolismo , ARN Pequeño no Traducido/administración & dosificación , ARN Pequeño no Traducido/genética , Distribución Tisular
9.
Front Cell Dev Biol ; 9: 733354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34751245

RESUMEN

Extracellular vesicles (EVs) are secreted lipid bilayer vesicles that mediate cell to cell communication and are effectors of cell therapy. Previous work has shown that canonical Wnt signaling is necessary for cell and EV therapeutic potency. Tryptophan 2,3-dioxygenase (TDO2) is a target gene of canonical Wnt signaling. Augmenting TDO2 in therapeutically inert fibroblasts endows their EVs with immunomodulatory capacity including attenuating inflammatory signaling in macrophages. Transcriptomic analysis showed that macrophages treated with EVs from fibroblasts overexpressing TDO2 had blunted inflammatory response compared to control fibroblast EVs. In vivo, EVs from TDO2-overexpressing fibroblasts preserved cardiac function. Taken together, these results describe the role of a major canonical Wnt-target gene (TDO2) in driving the therapeutic potency of cells and their EVs.

10.
Front Cell Dev Biol ; 9: 733158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660588

RESUMEN

Pulmonary fibrosis is a progressive disease for which no curative treatment exists. We have previously engineered dermal fibroblasts to produce extracellular vesicles with tissue reparative properties dubbed activated specialized tissue effector extracellular vesicles (ASTEX). Here, we investigate the therapeutic utility of ASTEX in vitro and in a mouse model of bleomycin-induced lung injury. RNA sequencing demonstrates that ASTEX are enriched in micro-RNAs (miRs) cargo compared with EVs from untransduced dermal fibroblast EVs (DF-EVs). Treating primary macrophages with ASTEX reduced interleukin (IL)6 expression and increased IL10 expression compared with DF-EV-exposed macrophages. Furthermore, exposure of human lung fibroblasts or vascular endothelial cells to ASTEX reduced expression of smooth muscle actin, a hallmark of myofibroblast differentiation (respectively). In vivo, intratracheal administration of ASTEX in naïve healthy mice demonstrated a favorable safety profile with no changes in body weight, lung weight to body weight, fibrotic burden, or histological score 3 weeks postexposure. In an acute phase (short-term) bleomycin model of lung injury, ASTEX reduced lung weight to body weight, IL6 expression, and circulating monocytes. In a long-term setting, ASTEX improved survival and reduced fibrotic content in lung tissue. These results suggest potential immunomodulatory and antifibrotic properties of ASTEX in lung injury.

11.
Mol Ther Nucleic Acids ; 24: 951-960, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34094713

RESUMEN

Cardiosphere-derived cell exosomes (CDCexo) and YF1, a CDCexo-derived non-coding RNA, elicit therapeutic bioactivity in models of myocardial infarction and hypertensive hypertrophy. Here we tested the hypothesis that YF1, a 56-nucleotide Y RNA fragment, could alleviate cardiomyocyte hypertrophy, inflammation, and fibrosis associated with hypertrophic cardiomyopathy (HCM) in transgenic mice harboring a clinically relevant mutation in cardiac troponin I (cTnIGly146). By quantitative PCR, YF1 was detectable in bone marrow, spleen, liver, and heart 30 min after intravenous (i.v.) infusion. For efficacy studies, mice were randomly allocated to receive i.v. YF1 or vehicle, monitored for ambulatory and cardiac function, and sacrificed at 4 weeks. YF1 (but not vehicle) improved ambulation and reduced cardiac hypertrophy and fibrosis. In parallel, peripheral mobilization of neutrophils and proinflammatory monocytes was decreased, and fewer macrophages infiltrated the heart. RNA-sequencing of macrophages revealed that YF1 confers substantive and broad changes in gene expression, modulating pathways associated with immunological disease and inflammatory responses. Together, these data demonstrate that YF1 can reverse hypertrophic and fibrotic signaling pathways associated with HCM, while improving function, raising the prospect that YF1 may be a viable novel therapeutic candidate for HCM.

12.
Biomaterials ; 274: 120852, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33951565

RESUMEN

Extremity trauma to military personnel and civilians commonly results in volumetric muscle loss (VML), leaving patients suffering chronic physical disability. Biomaterial-based technologies such as extracellular matrices (ECMs) are currently in clinical testing for soft tissue repair, but, in preclinical models of VML, the efficacy of ECMs is equivocal. In a murine model of VML, we investigated the effects of ECM and/or cardiosphere-derived cell (CDC) therapy; the latter improves skeletal myogenesis and muscle function in mdx mice, so we reasoned that CDCs may exert disease-modifying bioactivity in VML. While ECM alone improves functional recovery, CDCs have no additive or synergistic benefits with ECM transplantation following VML injury. However, CDCs alone are sufficient to promote muscle recovery, leading to sustained increases in muscle function throughout the study period. Notably, CDCs stimulate satellite cell accumulation in the muscle defect area and hasten myogenic progression (as evidenced by qPCR gene expression profiling), leading to global increases in myofiber numbers and anterior muscle compartment volume. Together, these data implicate CDCs as a viable therapeutic candidate to regenerate skeletal muscle injured by VML.


Asunto(s)
Enfermedades Musculares , Animales , Humanos , Ratones , Ratones Endogámicos mdx , Desarrollo de Músculos , Músculo Esquelético , Regeneración
13.
Front Physiol ; 11: 479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528309

RESUMEN

Heart disease remains an increasing major public health challenge in the United States and worldwide. A common end-organ feature in diseased hearts is myocardial fibrosis, which stiffens the heart and interferes with normal pump function, leading to pump failure. The development of cells for regenerative therapy has been met with many pitfalls on its path to clinical translation. Recognizing that regenerative cells secrete therapeutically bioactive vesicles has paved the way to circumvent many failures of cell therapy. In this review, we provide an overview of extracellular vesicles (EVs), with a focus on their utility as therapeutic agents for cardiac regeneration. We also highlight the engineering potential of EVs to enhance their therapeutic application.

14.
Theranostics ; 10(6): 2773-2790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194834

RESUMEN

Background: After myocardial infarction, necrotic cardiomyocytes release damage-associated proteins that stimulate innate immune pathways and macrophage tissue infiltration, which drives inflammation and myocardial remodeling. Circulating inflammatory extracellular vesicles play a crucial role in the acute and chronic phases of ischemia, in terms of inflammatory progression. In this study, we hypothesize that the paracrine effect mediated by these vesicles induces direct cytotoxicity in cardiomyocytes. Thus, we examined whether reducing the generation of inflammatory vesicles within the first few hours after the ischemic event ameliorates cardiac outcome at short and long time points. Methods: Myocardial infarction was induced in rats that were previously injected intraperitoneally with a chemical inhibitor of extracellular-vesicle biogenesis. Heart global function was assessed by echocardiography performed at 7, 14 and 28 days after MI. Cardiac outcome was also evaluated by hemodynamic analysis at sacrifice. Cytotoxic effects of circulating EV were evaluated ex-vivo in a Langendorff, system by measuring the level of cardiac troponin I (cTnI) in the perfusate. Mechanisms undergoing cytotoxic effects of EV derived from pro-inflammatory macrophages (M1) were studied in-vitro in primary rat neonatal cardiomyocytes. Results: Inflammatory response following myocardial infarction dramatically increased the number of circulating extracellular vesicles carrying alarmins such as IL-1α, IL-1ß and Rantes. Reducing the boost in inflammatory vesicles during the acute phase of ischemia resulted in preserved left ventricular ejection fraction in vivo. Hemodynamic analysis confirmed functional recovery by displaying higher velocity of left ventricular relaxation and improved contractility. When added to the perfusate of isolated hearts, post-infarction circulating vesicles induced significantly more cell death in adult cardiomyocytes, as assessed by cTnI release, comparing to circulating vesicles isolated from healthy (non-infarcted) rats. In vitro inflammatory extracellular vesicles induce cell death by driving nuclear translocation of NF-κB into nuclei of cardiomyocytes. Conclusion: Our data suggest that targeting circulating extracellular vesicles during the acute phase of myocardial infarction may offer an effective therapeutic approach to preserve function of ischemic heart.


Asunto(s)
Vesículas Extracelulares , Inflamación , Infarto del Miocardio , Miocardio , Receptor Toll-Like 4/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos , FN-kappa B/metabolismo , Ratas , Ratas Wistar , Troponina I/metabolismo
15.
Cardiovasc Res ; 116(2): 383-392, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31098627

RESUMEN

AIMS: Combined administration of anthracyclines (e.g. doxorubicin; Dox) and trastuzumab (Trz), a humanized anti-human epidermal growth factor receptor 2 (HER2; ErbB2), is an effective treatment for HER2-positive breast cancer. However, both agents are associated with cardiac toxicity. Human cardiac-resident mesenchymal progenitor cells (CPCs) secrete extracellular vesicles including nanosized exosomes which protect against myocardial ischaemia. Here, we investigated the effects of these exosomes using a novel model of Dox/Trz-mediated cardiotoxicity. METHODS AND RESULTS: CPCs were derived from cardiac atrial appendage specimens from patients who underwent heart surgery for heart valve disease and/or ischaemic heart disease, and exosomes were purified from CPC conditioned media. Proteomics analyses revealed that CPC exosomes contained multiple proteins involved in redox processes. Dox/Trz induced a significant increase in reactive oxygen species (ROS) in rat cardiomyocytes, which was prevented by CPC exosomes. In vivo, rats received six doses of Dox (Days 1-11), followed by six doses of Trz (Days 19-28). Three doses of either exosomes or exosome suspension vehicle were injected intravenously on Days 5, 11, and 19 in the treatment and control groups, respectively. Dox/Trz induced myocardial fibrosis, CD68+ inflammatory cell infiltrates, inducible nitric oxide synthase expression, and left ventricular dysfunction. CPC exosomes prevented these effects. These vesicles were highly enriched in miR-146a-5p compared with human dermal fibroblast exosomes. Dox upregulated Traf6 and Mpo, two known miR-146a-5p target genes (which encode signalling mediators of inflammatory and cell death axes) in myocytes. CPC exosomes suppressed miR-146a-5p target genes Traf6, Smad4, Irak1, Nox4, and Mpo in Dox-treated cells. Specific silencing of miR-146a-5p abrogated exosome-mediated suppression of those genes leading to an increase in Dox-induced cell death. CONCLUSIONS: Human CPC exosomes attenuate Dox-/Trz-induced oxidative stress in cardiomyocytes. Systemic administration of these vesicles prevents Dox/Trz cardiotoxicity in vivo. miR-146a-5p mediates some of the benefits of exosomes in this setting.


Asunto(s)
Cardiomiopatías/prevención & control , Doxorrubicina , Exosomas/trasplante , Trasplante de Células Madre Mesenquimatosas , Miocardio/patología , Trastuzumab , Disfunción Ventricular Izquierda/prevención & control , Administración Intravenosa , Anciano , Animales , Animales Recién Nacidos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Exosomas/metabolismo , Femenino , Fibrosis , Humanos , Mediadores de Inflamación/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Disfunción Ventricular Izquierda/inducido químicamente , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda , Remodelación Ventricular
16.
Cardiovasc Res ; 114(7): 992-1005, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29518183

RESUMEN

Aims: Cell therapy trials using cardiac-resident progenitor cells (CPCs) and bone marrow-derived mesenchymal stem/progenitor cells (BMCs) in patients after myocardial infarction have provided encouraging results. Exosomes, nanosized extracellular vesicles of endosomal origin, figure prominently in the bioactivities of these cells. However, a head-to-head comparison of exosomes from the two cell types has not been performed yet. Methods and results: CPCs and BMCs were derived from cardiac atrial appendage specimens and sternal bone marrow, respectively, from patients (n = 20; age, 69.9 ± 10.9) undergoing heart surgery for aortic valve disease and/or coronary artery disease. Vesicles were purified from cell conditioned media by centrifugation/filtration and ultracentrifugation. Vesicle preparations were predominantly composed of exosomes based on particle size and marker expression (CD9, CD63, CD81, Alix, and TSG-101). CPC-secreted exosomes prevented staurosporine-induced cardiomyocyte apoptosis more effectively than BMC-secreted exosomes. In vivo, CPC-secreted exosomes reduced scar size and improved ventricular function after permanent coronary occlusion in rats more efficiently than BMC-secreted exosomes. Both types of exosomes stimulated blood vessel formation. CPC-secreted exosomes, but not BMC-derived exosomes, enhanced ventricular function after ischaemia/reperfusion. Proteomics profiling identified pregnancy-associated plasma protein-A (PAPP-A) as one of the most highly enriched proteins in CPC vs. BMC exosomes. The active form of PAPP-A was detected on CPC exosome surfaces. These vesicles released insulin-like growth factor-1 (IGF-1) via proteolytic cleavage of IGF-binding protein-4 (IGFBP-4), resulting in IGF-1 receptor activation, intracellular Akt and ERK1/2 phosphorylation, decreased caspase activation, and reduced cardiomyocyte apoptosis. PAPP-A knockdown prevented CPC exosome-mediated cardioprotection both in vitro and in vivo. Conclusion: These results suggest that CPC-secreted exosomes may be more cardioprotective than BMC-secreted exosomes, and that PAPP-A-mediated IGF-1 release may explain the benefit. They illustrate a general mechanism whereby exosomes may function via an active protease on their surface, which releases a ligand in proximity to the transmembrane receptor bound by the ligand.


Asunto(s)
Exosomas/trasplante , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Isquemia Miocárdica/cirugía , Daño por Reperfusión Miocárdica/cirugía , Miocitos Cardíacos/trasplante , Proteína Plasmática A Asociada al Embarazo/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Apéndice Atrial/citología , Línea Celular , Medios de Cultivo Condicionados/metabolismo , Exosomas/metabolismo , Femenino , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Persona de Mediana Edad , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Fenotipo , Proteína Plasmática A Asociada al Embarazo/genética , Ratas Wistar , Recuperación de la Función , Transducción de Señal , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA