RESUMEN
INTRODUCTION: Clinical research in Alzheimer's disease (AD) lacks cohort diversity despite being a global health crisis. The Asian Cohort for Alzheimer's Disease (ACAD) was formed to address underrepresentation of Asians in research, and limited understanding of how genetics and non-genetic/lifestyle factors impact this multi-ethnic population. METHODS: The ACAD started fully recruiting in October 2021 with one central coordination site, eight recruitment sites, and two analysis sites. We developed a comprehensive study protocol for outreach and recruitment, an extensive data collection packet, and a centralized data management system, in English, Chinese, Korean, and Vietnamese. RESULTS: ACAD has recruited 606 participants with an additional 900 expressing interest in enrollment since program inception. DISCUSSION: ACAD's traction indicates the feasibility of recruiting Asians for clinical research to enhance understanding of AD risk factors. ACAD will recruit > 5000 participants to identify genetic and non-genetic/lifestyle AD risk factors, establish blood biomarker levels for AD diagnosis, and facilitate clinical trial readiness. HIGHLIGHTS: The Asian Cohort for Alzheimer's Disease (ACAD) promotes awareness of under-investment in clinical research for Asians. We are recruiting Asian Americans and Canadians for novel insights into Alzheimer's disease. We describe culturally appropriate recruitment strategies and data collection protocol. ACAD addresses challenges of recruitment from heterogeneous Asian subcommunities. We aim to implement a successful recruitment program that enrolls across three Asian subcommunities.
Asunto(s)
Enfermedad de Alzheimer , Pueblos de América del Norte , Humanos , Enfermedad de Alzheimer/genética , Proyectos Piloto , Asiático/genética , Canadá , Factores de RiesgoRESUMEN
Hereditary hemorrhagic telangiectasia (HHT) is a Mendelian disease characterized by vascular malformations (VMs) including visceral arteriovenous malformations and mucosal telangiectasia. HHT is caused by loss-of-function (LoF) mutations in one of three genes, ENG, ACVRL1, or SMAD4, and is inherited as an autosomal-dominant condition. Intriguingly, the constitutional mutation causing HHT is present throughout the body, yet the multiple VMs in individuals with HHT occur focally, rather than manifesting as a systemic vascular defect. This disconnect between genotype and phenotype suggests that a local event is necessary for the development of VMs. We investigated the hypothesis that local somatic mutations seed the formation HHT-related telangiectasia in a genetic two-hit mechanism. We identified low-frequency somatic mutations in 9/19 telangiectasia through the use of next-generation sequencing. We established phase for seven of nine samples, which confirms that the germline and somatic mutations in all seven samples exist in trans configuration; this is consistent with a genetic two-hit mechanism. These combined data suggest that bi-allelic loss of ENG or ACVRL1 may be a required event in the development of telangiectasia, and that rather than haploinsufficiency, VMs in HHT are caused by a Knudsonian two-hit mechanism.
Asunto(s)
Receptores de Activinas Tipo II/genética , Endoglina/genética , Mutación/genética , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditaria/genética , Malformaciones Vasculares/genética , Anciano , Alelos , Malformaciones Arteriovenosas/genética , Femenino , Genotipo , Humanos , Pérdida de Heterocigocidad/genética , Masculino , FenotipoRESUMEN
OBJECTIVE: To use standardized bleeding questionnaires to compare the severity and patterns of epistaxis in children with a mucocutaneous bleeding disorder and control children. STUDY DESIGN: The epistaxis sections of the Pediatric Bleeding Questionnaire (PBQ) administered to pediatric patients with von Willebrand disease or a platelet function disorder and healthy control children were reviewed. Scores and features of epistaxis (frequency, duration, onset, site, seasonal correlation, and need for medical/surgical intervention) were recorded. A PBQ epistaxis score ≥2 was defined as clinically significant. The Katsanis epistaxis scoring system was administered to eligible patients, ie, with ≥5 episodes of epistaxis per year. RESULTS: PBQ epistaxis scores were obtained for 66 patients, median age 12 years (range 0.6-18.3 years), and 56 control children. The median PBQ epistaxis score in patients was 2 vs 0 in control children (P <.0001). All of the features of epistaxis, except spontaneous onset, occurred in a significantly greater proportion of patients than control children with epistaxis. A total of 50% of the patients were graded as having severe epistaxis by the Katsanis epistaxis scoring system, and 30 of these (91%) had a clinically significant PBQ epistaxis score. CONCLUSION: Standardized bleeding questionnaires are useful in the assessment of epistaxis severity and pattern and may help to distinguish children with and without a mucocutaneous bleeding disorder.
Asunto(s)
Trastornos de las Plaquetas Sanguíneas/complicaciones , Epistaxis/diagnóstico , Adolescente , Trastornos de las Plaquetas Sanguíneas/diagnóstico , Niño , Preescolar , Epistaxis/etiología , Femenino , Humanos , Lactante , Masculino , Índice de Severidad de la Enfermedad , Encuestas y CuestionariosRESUMEN
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder that causes vascular malformations throughout the body. The most prevalent and accessible of these lesions are found throughout the skin and mucosa, and often rupture causing bleeding and anemia. A recent increase in potential HHT treatments have created a demand for quantitative metrics that can objectively measure the efficacy of new and developing treatments. We employ optical coherence tomography (OCT)-a high resolution, non-invasive imaging modality in a novel pipeline to image and quantitatively characterize dermal HHT lesion behavior over time or throughout the course of treatment. This study is aimed at detecting detailed morphological changes of dermal HHT lesions to understand the underlying dynamic processes of the disease. We present refined metrics tailored for HHT, developed from a pilot study using 3 HHT patients and 6 lesions over the course of multiple imaging dates, totalling to 26 lesion images. Preliminary results from these lesions are presented in this paper alongside representative OCT images. This study provides a new objective method to analyse and understand HHT lesions using a minimally invasive, accessible, cost-effective, and efficient imaging modality with quantitative metrics describing morphology and blood flow.
Asunto(s)
Angiografía/métodos , Microcirculación , Neovascularización Patológica , Piel/irrigación sanguínea , Telangiectasia Hemorrágica Hereditaria/diagnóstico por imagen , Tomografía de Coherencia Óptica , Ensayos Clínicos como Asunto , Fractales , Humanos , Interpretación de Imagen Asistida por Computador , Reconocimiento de Normas Patrones Automatizadas , Proyectos Piloto , Valor Predictivo de las Pruebas , Flujo Sanguíneo Regional , Telangiectasia Hemorrágica Hereditaria/fisiopatologíaRESUMEN
BACKGROUND: Vascular malformations in the central nervous system are difficult to monitor and treat due to their inaccessible location. Angiogenic and inflammatory proteins are secreted into the bloodstream and may serve as useful biomarkers for identifying patients at risk for complications or with certain disease phenotypes. METHODS: A validated multiplex protein array consisting of 26 angiogenic and inflammatory biomarkers (Angiome) was assessed in plasma isolated from healthy controls and patients with either sporadic brain arteriovenous malformation (BAVM), familial cerebral cavernous malformation (CCM), or hereditary hemorrhagic telangiectasia (HHT). These samples were obtained from archives of ongoing research studies at the University of California San Francisco and through prospective collection at the Toronto HHT Centre at St. Michael's Hospital. RESULTS: We compared circulating biomarker levels from each patient group to healthy controls and analyzed each pairwise combination of patient groups for differences in biomarker levels. Additionally, we analyzed the HHT samples to determine the association between biomarker levels and the following HHT-specific phenotypes, BAVM, pulmonary arteriovenous malformation (PAVM), liver vascular malformation (LVM), and gastrointestinal (GI) bleeding. Compared to controls, levels of SDF1 were significantly elevated in HHT patients (Proportional Increase [PI] = 1.87, p < 0.001, q = 0.011). Levels of sENG were significantly reduced in HHT patients compared to controls (PI = 0.56, p < 0.001, q < 0.001), reflecting the prevalence of HHT1 patients in this cohort. Levels of IL6 (PI = 3.22, p < 0.001, q < 0.001) and sTGFßR3 (PI = 0.70, p = 0.001, q < 0.029) differed significantly in CCM patients compared to controls. Compared to controls, ten of the biomarkers were significantly different in sporadic BAVM patients (q-values < 0.05). Among the pairwise combinations of patient groups, a significant elevation was observed in TGFß1 in CCM patients compared to sporadic BAVM patients (PI = 2.30, p < 0.001, q = 0.034). When examining the association of circulating biomarker levels with HHT-specific phenotypes, four markers were significantly lower in HHT patients with BAVM (q-values < 0.05), and four markers were significantly higher in patients with LVM (q-values < 0.05). CONCLUSIONS: This pilot study suggests that the profile of circulating angiogenic and inflammatory biomarkers may be unique to each type of vascular malformation. Furthermore, this study indicates that circulating biomarkers may be useful for assessing phenotypic traits of vascular malformations.
Asunto(s)
Malformaciones Arteriovenosas Intracraneales , Telangiectasia Hemorrágica Hereditaria , Malformaciones Vasculares , Biomarcadores , Humanos , Proyectos Piloto , Estudios ProspectivosRESUMEN
AIM: To test if the impairment of mononuclear cell (MNC) migration in patients with hereditary hemorrhagic telangiectasia (HHT) is due to the reduction of the endoglin (ENG) receptor on the cell surface and oxidative stress. METHODS: MNCs of HHT patients and normal controls were subjected to migration assay. Fractions of MNCs were pre-incubated with antibodies specific to HHT causative genes ENG [hereditary hemorrhagic telangiectasia type 1 (HHT1)] or activin receptor-like kinase 1 [ALK1, hereditary hemorrhagic telangiectasia type 2 (HHT2)], AMD3100 or Diprotin-A to block ENG, ALK1 C-X-C chemokine receptor 4 (CXCR4) or CD26 (increased in HHT1 MNCs) before migration assay. The MNCs were allowed to migrate toward stromal cell-derived factor-1α (SDF-1α) for 18 h. The expression of CXCR4, CD26, superoxide dismutase 1 (SOD1) and glutathione peroxidase 1 (GPX1) in MNCs and nitric oxide levels in the plasma were analyzed. RESULTS: Compared to the controls, fewer HHT1 MNCs and similar number of HHT2 MNCs migrated toward SDF-1α. Diprotin-A pre-treatment improved HHT1 MNC-migration, but had no effect on normal and HHT2 MNCs. Pre-incubation with an anti-ENG antibody reduced the migration of normal MNCs. Diprotin-A did not improve the migration of ENG antibody pre-treated MNCs. Anti-ALK1 antibody had no effect on MNC-migration. AMD3100 treatment reduced normal and HHT MNC-migration. ENG mRNA level was reduced in HHT1 and HHT2 MNCs. ALK1 mRNA was reduced in HHT2 MNCs only. CD26 expression was higher in HHT1 MNCs. Pre-treatment of MNCs with anti-ENG or anti-ALK1 antibody had no effect on CD26 and CXCR4 expression. The expression of antioxidant enzymes, SOD1, was reduced in HHT1 MNCs, which was accompanied with an increase of ROS in HHT MNCs and nitric oxide in HHT1 plasma. CONCLUSIONS: Reduction of ENG receptor on MNC surface reduced monocyte migration toward SDF-1α independent of CD26 expression. Increased oxidative stress could alter HHT MNC migration behavior.
RESUMEN
Hereditary hemorrhagic telangiectasia (HHT), a rare autosomal dominant disease mostly caused by mutations in three known genes (ENG, ACVRL1, and SMAD4), is characterized by the development of vascular malformations (VMs). Patients with HHT may present with mucocutaneous telangiectasia, as well as organ arteriovenous malformations (AVMs) of the central nervous system, lungs, and liver. Genotype-phenotype correlations have been well described in adults with HHT. We aimed to investigate genotype-phenotype correlations among pediatric HHT patients. Demographic, clinical, and genetic data were collected and analyzed in 205 children enrolled in the multicenter Brain Vascular Malformation Consortium HHT Project. A chi-square test was used to determine the association between phenotypic presentations and genotype. Among 205 patients (age range: 0-18 years; mean: 11 years), ENG mutation was associated with the presence of pulmonary AVMs (p < 0.001) and brain VM (p < 0.001). The presence of a combined phenotype-defined as both pulmonary AVMs and brain VMs-was also associated with ENG mutation. Gastrointestinal bleeding was rare (4.4%), but was associated with SMAD4 genotype (p < 0.001). We conclude that genotype-phenotype correlations among pediatric HHT patients are similar to those described among adults. Specifically, pediatric patients with ENG mutation have a greater prevalence of pulmonary AVMs, brain VMs, and a combined phenotype.
Asunto(s)
Fístula Arteriovenosa , Malformaciones Arteriovenosas , Embolización Terapéutica , Venas Pulmonares , Fístula Arteriovenosa/diagnóstico por imagen , Fístula Arteriovenosa/etiología , Malformaciones Arteriovenosas/complicaciones , Malformaciones Arteriovenosas/diagnóstico por imagen , Malformaciones Arteriovenosas/terapia , Humanos , Arteria Pulmonar/anomalías , Arteria Pulmonar/diagnóstico por imagen , Venas Pulmonares/anomalías , Venas Pulmonares/diagnóstico por imagenRESUMEN
UNLABELLED: This study investigated the impact of aerobic exercise on laboratory assessments of haemostatic activity in boys (5-18 years of age) with haemophilia A (HA) or B (HB), examining the hypothesis that laboratory coagulation parameters temporarily improve with exercise. Thirty subjects meeting eligibility criteria (19 HA; 11 HB; mean age: 12.8 years) were invited to participate. They underwent a replacement factor washout period and were advised against strenuous activity for three days prior to the planned intervention. At study visit, baseline blood samples were drawn prior to exercise on a stationary cycle ergometer, aiming to attain 3 minutes (min) of cycling at 85 % of predicted maximum heart rate. Blood work was repeated 5 min (t5) and 60 min (t60) post exercise completion. Samples were assessed for platelet count (PC), factor VIII activity ( FVIII: C), von Willebrand antigen (VWF:Ag), ristocetin cofactor activity (VWF:RCo) and platelet function analysis (PFA-100); maximum rate of thrombus generation (MRTG) in blood was measured via thromboelastography and plasma peak thrombin generation (PTG) via calibrated automated thrombography. Mean duration of exercise was 13.9 (± 2.6) min. On average, t5 samples showed significant elevation, relative to baseline in PC, FVIII:C, VWF:Ag, VWF:RCo and PTG, while FVIII: C, VWF:Ag, VWF:RCo and MRTG were significantly elevated in t60 samples. Within the cohort, participants with severe HA showed no change in FVIII: C levels with exercise. The greatest improvement in haemostatic indices was observed in post-adolescent males with mild-moderate HA, who thus represent the group most likely to benefit from a reduction of bleeding risk in the setting of exercise.