Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Chem Biol ; 18(2): 207-215, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949839

RESUMEN

Small-molecule kinase inhibitors represent a major group of cancer therapeutics, but tumor responses are often incomplete. To identify pathways that modulate kinase inhibitor response, we conducted a genome-wide knockout (KO) screen in glioblastoma cells treated with the pan-ErbB inhibitor neratinib. Loss of general control nonderepressible 2 (GCN2) kinase rendered cells resistant to neratinib, whereas depletion of the GADD34 phosphatase increased neratinib sensitivity. Loss of GCN2 conferred neratinib resistance by preventing binding and activation of GCN2 by neratinib. Several other Food and Drug Administration (FDA)-approved inhibitors, such erlotinib and sunitinib, also bound and activated GCN2. Our results highlight the utility of genome-wide functional screens to uncover novel mechanisms of drug action and document the role of the integrated stress response (ISR) in modulating the response to inhibitors of oncogenic kinases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Eliminación de Gen , Glioblastoma/tratamiento farmacológico , Humanos , Inhibidores de Proteínas Quinasas/química
2.
Cancer Discov ; 7(9): 1018-1029, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28619981

RESUMEN

Bruton tyrosine kinase (BTK) links the B-cell antigen receptor (BCR) and Toll-like receptors with NF-κB. The role of BTK in primary central nervous system (CNS) lymphoma (PCNSL) is unknown. We performed a phase I clinical trial with ibrutinib, the first-in-class BTK inhibitor, for patients with relapsed or refractory CNS lymphoma. Clinical responses to ibrutinib occurred in 10 of 13 (77%) patients with PCNSL, including five complete responses. The only PCNSL with complete ibrutinib resistance harbored a mutation within the coiled-coil domain of CARD11, a known ibrutinib resistance mechanism. Incomplete tumor responses were associated with mutations in the B-cell antigen receptor-associated protein CD79B. CD79B-mutant PCNSLs showed enrichment of mammalian target of rapamycin (mTOR)-related gene sets and increased staining with PI3K/mTOR activation markers. Inhibition of the PI3K isoforms p110α/p110δ or mTOR synergized with ibrutinib to induce cell death in CD79B-mutant PCNSL cells.Significance: Ibrutinib has substantial activity in patients with relapsed or refractory B-cell lymphoma of the CNS. Response rates in PCNSL were considerably higher than reported for diffuse large B-cell lymphoma outside the CNS, suggesting a divergent molecular pathogenesis. Combined inhibition of BTK and PI3K/mTOR may augment the ibrutinib response in CD79B-mutant human PCNSLs. Cancer Discov; 7(9); 1018-29. ©2017 AACR.See related commentary by Lakshmanan and Byrd, p. 940This article is highlighted in the In This Issue feature, p. 920.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Linfoma de Células B/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Adenina/análogos & derivados , Adulto , Agammaglobulinemia Tirosina Quinasa , Anciano , Anciano de 80 o más Años , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Proteínas Adaptadoras de Señalización CARD/genética , Neoplasias del Sistema Nervioso Central/sangre , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/metabolismo , Resistencia a Antineoplásicos/genética , Femenino , Guanilato Ciclasa/genética , Humanos , Linfoma de Células B/sangre , Linfoma de Células B/líquido cefalorraquídeo , Linfoma de Células B/metabolismo , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Mutación , Piperidinas , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/efectos adversos , Pirazoles/farmacocinética , Pirimidinas/efectos adversos , Pirimidinas/farmacocinética , Resultado del Tratamiento , Adulto Joven
3.
Clin Cancer Res ; 22(8): 1837-42, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26819452

RESUMEN

IDH1 and IDH2 are homodimeric enzymes that catalyze the conversion of isocitrate to α-ketoglutarate (α-KG) and concomitantly produce reduced NADPH from NADP(+) Mutations in the genes encoding IDH1 and IDH2 have recently been found in a variety of human cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. The mutant protein loses its normal enzymatic activity and gains a new ability to produce the "oncometabolite" R(-)-2-hydroxyglutarate (R-2-HG). R-2-HG competitively inhibits α-KG-dependent enzymes which play crucial roles in gene regulation and tissue homeostasis. Expression of mutant IDH impairs cellular differentiation in various cell lineages and promotes tumor development in cooperation with other cancer genes. First-generation inhibitors of mutant IDH have entered clinical trials, and have shown encouraging results in patients with IDH-mutant AML. This article summarizes recent progress in our understanding of the role of mutant IDH in tumorigenesis.Clin Cancer Res; 22(8); 1837-42. ©2016 AACR.


Asunto(s)
Isocitrato Deshidrogenasa/genética , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Transformación Celular Neoplásica , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Investigación Biomédica Traslacional
4.
Cancer Lett ; 357(1): 316-327, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25444896

RESUMEN

In a wide range of neuroblastoma-derived lines oxovanadium compounds such as bis(maltolato)oxovanadium(IV) (BMOV) are cytotoxic. This is not explained by oxidative stress or inhibition of ion channels. Genotoxicity is unlikely given that a p53 response is absent and p53-mutant lines are also sensitive. Cytotoxicity is inhibited by N-acetyl cysteine and glutathione ester, indicating that BMOV action is sensitive to cytoplasmic redox and thiol status. Significantly, combining BMOV with glutathione synthesis inhibition greatly enhances BMOV-induced cell death. This combination treatment triggers high AKT pathway activation, highlighting the potential functional importance of PTP inhibition by BMOV. AKT activation itself, however, is not required for cytotoxicity. Oxovanadium compounds may thus represent novel leads as p53-independent therapeutics for neuroblastoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Butionina Sulfoximina/farmacología , Neuroblastoma/tratamiento farmacológico , Pironas/farmacología , Vanadatos/farmacología , Animales , Butionina Sulfoximina/administración & dosificación , Línea Celular Tumoral , Sinergismo Farmacológico , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Neuroblastoma/metabolismo , Oxidación-Reducción , Pironas/administración & dosificación , Transducción de Señal , Transfección , Vanadatos/administración & dosificación
5.
Cancer Lett ; 328(1): 44-54, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23022267

RESUMEN

Retinoic acid (RA)-induced differentiation therapy is partially successful in neuroblastoma treatment. We found that a novel combination of vanadium-based PTP inhibitors with RA induced extensive differentiation in neuroblastoma cells. In contrast to RA alone, this led to either permanent differentiation or senescence after 14days of combined treatment followed by chemical removal. Senescence was dependent in part on synergistic AKT and ERK activation. p21 was also strongly induced, but in contrast to oncogene-induced senescence, p53 was not activated. Vanadium-based inhibitors thus serve strongly to enhance RA's ability to drive differentiation and a novel form of senescence in neuroblastoma cells.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Diferenciación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Tretinoina/farmacología , Línea Celular Tumoral , Sinergismo Farmacológico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neuroblastoma/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
6.
Science ; 340(6132): 626-30, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23558169

RESUMEN

The recent discovery of mutations in metabolic enzymes has rekindled interest in harnessing the altered metabolism of cancer cells for cancer therapy. One potential drug target is isocitrate dehydrogenase 1 (IDH1), which is mutated in multiple human cancers. Here, we examine the role of mutant IDH1 in fully transformed cells with endogenous IDH1 mutations. A selective R132H-IDH1 inhibitor (AGI-5198) identified through a high-throughput screen blocked, in a dose-dependent manner, the ability of the mutant enzyme (mIDH1) to produce R-2-hydroxyglutarate (R-2HG). Under conditions of near-complete R-2HG inhibition, the mIDH1 inhibitor induced demethylation of histone H3K9me3 and expression of genes associated with gliogenic differentiation. Blockade of mIDH1 impaired the growth of IDH1-mutant--but not IDH1-wild-type--glioma cells without appreciable changes in genome-wide DNA methylation. These data suggest that mIDH1 may promote glioma growth through mechanisms beyond its well-characterized epigenetic effects.


Asunto(s)
Bencenoacetamidas/farmacología , Diferenciación Celular , Inhibidores Enzimáticos/farmacología , Glioma/enzimología , Glioma/patología , Imidazoles/farmacología , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Animales , Bencenoacetamidas/administración & dosificación , Bencenoacetamidas/toxicidad , Diferenciación Celular/efectos de los fármacos , Transformación Celular Neoplásica , Inhibidores Enzimáticos/toxicidad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/genética , Glutaratos/metabolismo , Histonas/metabolismo , Imidazoles/administración & dosificación , Imidazoles/toxicidad , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/metabolismo , Metilación , Ratones , Ratones SCID , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Multimerización de Proteína , Interferencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA