Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Med ; 29(1): 67, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217845

RESUMEN

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent monogenic human diseases. It is mostly caused by pathogenic variants in PKD1 or PKD2 genes that encode interacting transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2). Among many pathogenic processes described in ADPKD, those associated with cAMP signaling, inflammation, and metabolic reprogramming appear to regulate the disease manifestations. Tolvaptan, a vasopressin receptor-2 antagonist that regulates cAMP pathway, is the only FDA-approved ADPKD therapeutic. Tolvaptan reduces renal cyst growth and kidney function loss, but it is not tolerated by many patients and is associated with idiosyncratic liver toxicity. Therefore, additional therapeutic options for ADPKD treatment are needed. METHODS: As drug repurposing of FDA-approved drug candidates can significantly decrease the time and cost associated with traditional drug discovery, we used the computational approach signature reversion to detect inversely related drug response gene expression signatures from the Library of Integrated Network-Based Cellular Signatures (LINCS) database and identified compounds predicted to reverse disease-associated transcriptomic signatures in three publicly available Pkd2 kidney transcriptomic data sets of mouse ADPKD models. We focused on a pre-cystic model for signature reversion, as it was less impacted by confounding secondary disease mechanisms in ADPKD, and then compared the resulting candidates' target differential expression in the two cystic mouse models. We further prioritized these drug candidates based on their known mechanism of action, FDA status, targets, and by functional enrichment analysis. RESULTS: With this in-silico approach, we prioritized 29 unique drug targets differentially expressed in Pkd2 ADPKD cystic models and 16 prioritized drug repurposing candidates that target them, including bromocriptine and mirtazapine, which can be further tested in-vitro and in-vivo. CONCLUSION: Collectively, these results indicate drug targets and repurposing candidates that may effectively treat pre-cystic as well as cystic ADPKD.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Humanos , Ratones , Reposicionamiento de Medicamentos , Expresión Génica , Riñón/metabolismo , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/complicaciones , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Tolvaptán/farmacología , Tolvaptán/uso terapéutico , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
2.
Ir J Med Sci ; 193(1): 389-395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37249793

RESUMEN

BACKGROUND: People with Parkinson's disease (PwP) often report problems with their handwriting before they receive a formal diagnosis. Many PwP suffer from deteriorating handwriting throughout their illness, which has detrimental effects on many aspects of their quality of life. AIMS: To assess a 6-week online training programme aimed at improving handwriting of PwP. METHODS: Handwriting samples from a community-based cohort of PwP (n = 48) were analysed using systematic detection of writing problems (SOS-PD) by two independent raters, before and after a 6-week remotely monitored physiotherapy-led training programme. Inter-rater variability on multiple measures of handwriting quality was analysed. The handwriting data was analysed using pre-/post-design in the same individuals. Multiple aspects of the handwriting samples were assessed, including writing fluency, transitions between letters, regularity in letter size, word spacing, and straightness of lines. RESULTS: Analysis of inter-rater reliability showed high agreement for total handwriting scores and letter size, as well as speed and legibility scores, whereas there were mixed levels of inter-rater reliability for other handwriting measures. Overall handwriting quality (p = 0.001) and legibility (p = 0.009) significantly improved, while letter size (p = 0.012), fluency (p = 0.001), regularity of letter size (p = 0.009), and straightness of lines (p = 0.036) were also enhanced. CONCLUSIONS: The results of this study show that this 6-week intensive remotely-monitored physiotherapy-led handwriting programme improved handwriting in PwP. This is the first study of its kind to use this tool remotely, and it demonstrated that the SOS-PD is reliable for measuring handwriting in PwP.


Asunto(s)
Enfermedad de Parkinson , Humanos , Reproducibilidad de los Resultados , Calidad de Vida , Escritura Manual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA