Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 591(7848): 124-130, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33494096

RESUMEN

Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/fisiopatología , Interferones/antagonistas & inhibidores , Interferones/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Secuencia de Bases , COVID-19/sangre , COVID-19/virología , Femenino , Humanos , Inmunoglobulina G/inmunología , Interferones/metabolismo , Masculino , Neutrófilos/inmunología , Neutrófilos/patología , Dominios Proteicos , Receptor de Interferón alfa y beta/antagonistas & inhibidores , Receptor de Interferón alfa y beta/inmunología , Receptor de Interferón alfa y beta/metabolismo , Receptores de IgG/inmunología , Análisis de la Célula Individual , Carga Viral/inmunología
2.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L262-L269, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37401383

RESUMEN

Microbes, toxins, therapeutics, and cells are often instilled into lungs of mice to model diseases and test experimental interventions. Consistent pulmonary delivery is critical for experimental power and reproducibility, but we observed variation in outcomes between handlers using different anesthetic approaches for intranasal dosing in mice. We therefore used a radiotracer to quantify lung delivery after intranasal dosing under inhalational (isoflurane) versus injectable (ketamine/xylazine) anesthesia in C57BL/6 mice. We found that ketamine/xylazine anesthesia resulted in delivery of a greater proportion (52 ± 9%) of an intranasal dose to lungs relative to isoflurane anesthesia (30 ± 15%). This difference in pulmonary dose delivery altered key outcomes in models of viral and bacterial pneumonia, with mice anesthetized with ketamine/xylazine for intranasal infection with influenza A virus or Pseudomonas aeruginosa developing more robust lung inflammation responses relative to control animals randomized to isoflurane anesthesia. Pulmonary dosing efficiency through oropharyngeal aspiration was not affected by anesthetic method and resulted in delivery of 63 ± 8% of dose to lungs, and a nonsurgical intratracheal dosing approach further increased lung delivery to 92 ± 6% of dose. The use of either of these more precise dosing methods yielded greater experimental power in the bacterial pneumonia model relative to intranasal infection. Both anesthetic approach and dosing route can impact pulmonary dosing efficiency. These factors affect experimental power and so should be considered when planning and reporting studies involving delivery of fluids to lungs of mice.NEW & NOTEWORTHY Many lung research studies involve dosing fluids into lungs of mice. In this study, the authors measure lung deposition using intranasal (i.n.), oropharyngeal aspiration (o.a.), and intratracheal (i.t.) dosing methods in mice. Anesthetic approach and administration route were found to affect pulmonary dosing efficiency. The authors demonstrate that refinements to dosing techniques can enable reductions in the number of animals needed for bacterial and viral pneumonia studies.


Asunto(s)
Anestesia , Anestésicos , Isoflurano , Ketamina , Animales , Ratones , Anestesia/métodos , Pulmón , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Xilazina
3.
Circ Res ; 128(5): 655-669, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33508948

RESUMEN

RATIONALE: Circulating monocytes can have proinflammatory or proreparative phenotypes. The endogenous signaling molecules and pathways that regulate monocyte polarization in vivo are poorly understood. We have shown that platelet-derived ß2M (ß-2 microglobulin) and TGF-ß (transforming growth factor ß) have opposing effects on monocytes by inducing inflammatory and reparative phenotypes, respectively, but each bind and signal through the same receptor. We now define the signaling pathways involved. OBJECTIVE: To determine the molecular mechanisms and signal transduction pathways by which ß2M and TGF-ß regulate monocyte responses both in vitro and in vivo. METHODS AND RESULTS: Wild-type- (WT) and platelet-specific ß2M knockout mice were treated intravenously with either ß2M or TGF-ß to increase plasma concentrations to those in cardiovascular diseases. Elevated plasma ß2M increased proinflammatory monocytes, while increased plasma TGFß increased proreparative monocytes. TGF-ßR (TGF-ß receptor) inhibition blunted monocyte responses to both ß2M and TGF-ß in vivo. Using imaging flow cytometry, we found that ß2M decreased monocyte SMAD2/3 nuclear localization, while TGF-ß promoted SMAD nuclear translocation but decreased noncanonical/inflammatory (JNK [jun kinase] and NF-κB [nuclear factor-κB] nuclear localization). This was confirmed in vitro using both imaging flow cytometry and immunoblots. ß2M, but not TGF-ß, promoted ubiquitination of SMAD3 and SMAD4, that inhibited their nuclear trafficking. Inhibition of ubiquitin ligase activity blocked noncanonical SMAD-independent monocyte signaling and skewed monocytes towards a proreparative monocyte response. CONCLUSIONS: Our findings indicate that elevated plasma ß2M and TGF-ß dichotomously polarize monocytes. Furthermore, these immune molecules share a common receptor but induce SMAD-dependent canonical signaling (TGF-ß) versus noncanonical SMAD-independent signaling (ß2M) in a ubiquitin ligase dependent manner. This work has broad implications as ß2M is increased in several inflammatory conditions, while TGF-ß is increased in fibrotic diseases. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Monocitos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Microglobulina beta-2/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Humanos , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Smad/metabolismo , Células THP-1 , Microglobulina beta-2/farmacología
5.
Am J Respir Cell Mol Biol ; 64(5): 557-568, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33556295

RESUMEN

Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.


Asunto(s)
Asma/inmunología , Plaquetas/inmunología , Hiperreactividad Bronquial/inmunología , Pulmón/inmunología , Activación Plaquetaria/inmunología , Receptores CCR3/inmunología , Adolescente , Adulto , Anciano , Alérgenos/administración & dosificación , Animales , Antígenos Dermatofagoides/administración & dosificación , Proteínas de Artrópodos/administración & dosificación , Asma/genética , Asma/mortalidad , Asma/patología , Plaquetas/efectos de los fármacos , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/genética , Hiperreactividad Bronquial/patología , Niño , Cisteína Endopeptidasas/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Persona de Mediana Edad , Activación Plaquetaria/efectos de los fármacos , Pyroglyphidae/química , Pyroglyphidae/inmunología , Receptores CCR3/genética , Receptores CCR4/genética , Receptores CCR4/inmunología , Receptores CXCR4/genética , Receptores CXCR4/inmunología , Transducción de Señal , Análisis de Supervivencia
6.
Am J Respir Cell Mol Biol ; 62(3): 364-372, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31647878

RESUMEN

The immune system is designed to robustly respond to pathogenic stimuli but to be tolerant to endogenous ligands to not trigger autoimmunity. Here, we studied an endogenous damage-associated molecular pattern, mitochondrial DNA (mtDNA), during primary graft dysfunction (PGD) after lung transplantation. We hypothesized that cell-free mtDNA released during lung ischemia-reperfusion triggers neutrophil extracellular trap (NET) formation via TLR9 signaling. We found that mtDNA increases in the BAL fluid of experimental PGD (prolonged cold ischemia followed by orthotopic lung transplantation) and not in control transplants with minimal warm ischemia. The adoptive transfer of mtDNA into the minimal warm ischemia graft immediately before lung anastomosis induces NET formation and lung injury. TLR9 deficiency in neutrophils prevents mtDNA-induced NETs, and TLR9 deficiency in either the lung donor or recipient decreases NET formation and lung injury in the PGD model. Compared with human lung transplant recipients without PGD, severe PGD was associated with high levels of BAL mtDNA and NETs, with evidence of relative deficiency in DNaseI. We conclude that mtDNA released during lung ischemia-reperfusion triggers TLR9-dependent NET formation and drives lung injury. In PGD, DNaseI therapy has a potential dual benefit of neutralizing a major NET trigger (mtDNA) in addition to dismantling pathogenic NETs.


Asunto(s)
Isquemia Fría/efectos adversos , ADN Mitocondrial/farmacología , Trampas Extracelulares/metabolismo , Neutrófilos/efectos de los fármacos , Disfunción Primaria del Injerto/inmunología , Receptor Toll-Like 9/fisiología , Lesión Pulmonar Aguda/etiología , Animales , Líquido del Lavado Bronquioalveolar/citología , Citrulinación , ADN Mitocondrial/administración & dosificación , Desoxirribonucleasa I/metabolismo , Humanos , Trasplante de Pulmón , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Disfunción Primaria del Injerto/metabolismo , Arginina Deiminasa Proteína-Tipo 4/deficiencia , Arginina Deiminasa Proteína-Tipo 4/fisiología , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Organismos Libres de Patógenos Específicos , Receptor Toll-Like 9/deficiencia , Isquemia Tibia/efectos adversos
7.
FASEB J ; 33(2): 1578-1594, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30204499

RESUMEN

Psoriasis is characterized by keratinocyte hyperproliferation, erythema, as well as a form of pruritus, involving cutaneous discomfort. There is evidence from both clinical and murine models of psoriasis that chemical or surgical depletion of small-diameter sensory nerves/nociceptors benefits the condition, but the mechanisms are unclear. Hence, we aimed to understand the involvement of sensory nerve mediators with a murine model of psoriasis and associated spontaneous behaviors, indicative of cutaneous discomfort. We have established an Aldara model of psoriasis in mice and chemically depleted the small-diameter nociceptors in a selective manner. The spontaneous behaviors, in addition to the erythema and skin pathology, were markedly improved. Attenuated inflammation was associated with reduced dermal macrophage influx and production of reactive oxygen/nitrogen species (peroxynitrite and protein nitrosylation). Subsequently, this directly influenced observed behavioral responses. However, the blockade of common sensory neurogenic mechanisms for transient receptor potential (TRP)V1, TRPA1, and neuropeptides (substance P and calcitonin gene-related peptide) using genetic and pharmacological approaches inhibited the behaviors but not the inflammation. Thus, a critical role of the established sensory TRP-neuropeptide pathway in influencing cutaneous discomfort is revealed, indicating the therapeutic potential of agents that block that pathway. The ongoing inflammation is mediated by a distinct sensory pathway involving macrophage activation.-Kodji, X., Arkless, K. L., Kee, Z., Cleary, S. J., Aubdool, A. A., Evans, E., Caton, P., Pitchford, S. C., Brain, S. D. Sensory nerves mediate spontaneous behaviors in addition to inflammation in a murine model of psoriasis.


Asunto(s)
Inflamación/patología , Psoriasis/patología , Células Receptoras Sensoriales/patología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Desnervación , Modelos Animales de Enfermedad , Diterpenos/farmacología , Imiquimod/farmacología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Psoriasis/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Receptoras Sensoriales/metabolismo , Piel/irrigación sanguínea , Piel/patología , Sustancia P/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo
8.
Am J Respir Cell Mol Biol ; 61(2): 232-243, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30768917

RESUMEN

Platelets are recruited to inflammatory foci and contribute to host defense and inflammatory responses. Compared with platelet recruitment in hemostasis and thrombosis, the mechanisms of platelet recruitment in inflammation and host defense are poorly understood. Neutrophil recruitment to lung airspaces after inhalation of bacterial LPS requires platelets and PSGL-1 in mice. Given this association between platelets and neutrophils, we investigated whether recruitment of platelets to lungs of mice after LPS inhalation was dependent on PSGL-1, P-selectin, or interaction with neutrophils. BALB/c mice were administered intranasal LPS (O55:B5, 5 mg/kg) and, 48 hours later, lungs were collected and platelets and neutrophils quantified in tissue sections by immunohistochemistry. The effects of functional blocking antibody treatments targeting the platelet-neutrophil adhesion molecules, P-selectin or PSGL-1, or treatment with a neutrophil-depleting antibody targeting Ly6G, were tested on the extent of LPS-induced lung platelet recruitment. Separately in Pf4-Cre × mTmG mice, two-photon intravital microscopy was used to image platelet adhesion in live lungs. Inhalation of LPS caused both platelet and neutrophil recruitment to the lung vasculature. However, decreasing lung neutrophil recruitment by blocking PSGL-1, P-selectin, or depleting blood neutrophils had no effect on lung platelet recruitment. Lung intravital imaging revealed increased adhesion of platelets in the lung microvasculature which was not associated with thrombus formation. In conclusion, platelet recruitment to lungs in response to LPS occurs through mechanisms distinct from those mediating neutrophil recruitment, or the occurrence of pulmonary emboli.


Asunto(s)
Plaquetas/metabolismo , Pulmón/metabolismo , Glicoproteínas de Membrana/metabolismo , Microcirculación , Neutrófilos/metabolismo , Selectina-P/metabolismo , Adhesividad Plaquetaria , Administración Intranasal , Animales , Antígenos Ly/metabolismo , Adhesión Celular , Femenino , Inflamación , Lipopolisacáridos , Pulmón/irrigación sanguínea , Ratones , Ratones Endogámicos BALB C , Infiltración Neutrófila , Embolia Pulmonar/metabolismo
9.
Am J Respir Cell Mol Biol ; 59(1): 96-103, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29365287

RESUMEN

Platelet activation occurs in patients with allergic inflammation, and platelets can be activated directly by allergen via an IgE-dependent process. Platelets have been shown to activate APCs such as CD11c+ dendritic cells in vitro. Although CD11c+ dendritic cells are a requisite for allergen sensitization, the role of platelets in this process is unknown. In this study, we investigated whether platelets were necessary for allergen sensitization. Balb/c mice sensitized to ovalbumin were exposed to subsequent aerosolized allergen (ovalbumin challenge). We analyzed lung CD11c+ cell activation, colocalization with platelets, and some other indices of inflammation. The role of platelets at the time of allergen sensitization was assessed through platelet depletion experiments restricted to the period of sensitization. Platelets colocalized with airway CD11c+ cells, and this association increased after allergen sensitization as well as after subsequent allergen exposure. Temporary platelet depletion (>95%) at the time of allergen sensitization led to a suppression of IgE and IL-4 synthesis and to a decrease in the pulmonary recruitment of eosinophils, macrophages, and lymphocytes after subsequent allergen exposure. Furthermore, in mice previously depleted of platelets at the time of sensitization, the recovered platelet population was shown to have reduced expression of FcεRI. Pulmonary CD11c+ cell recruitment was suppressed in these mice after allergen challenge, suggesting that the migration of CD11c+ cells in vivo may be dependent on direct platelet recognition of allergen. We conclude that platelets are necessary for efficient host sensitization to allergen. This propagates the subsequent inflammatory response during secondary allergen exposure and increases platelet association with airway CD11c+ cells.


Asunto(s)
Alérgenos/inmunología , Plaquetas/inmunología , Inmunización , Animales , Antígeno CD11c/metabolismo , Femenino , Inmunoglobulina E/biosíntesis , Interleucina-4/biosíntesis , Leucocitos/patología , Pulmón/patología , Ratones Endogámicos BALB C , Ovalbúmina/inmunología , Receptores de IgE/metabolismo , Trombocitopenia/inmunología , Trombocitopenia/patología , Factores de Tiempo
10.
Am J Respir Cell Mol Biol ; 58(3): 331-340, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28957635

RESUMEN

Platelets have been implicated in pulmonary inflammatory cell recruitment after exposure to allergic and nonallergic stimuli, but little is known about the role of platelets in response to pulmonary infection with Pseudomonas aeruginosa. In this study, we have investigated the impact of the experimental depletion of circulating platelets on a range of inflammatory and bacterial parameters, and their subsequent impact on mortality in a murine model of pulmonary infection with P. aeruginosa. P. aeruginosa infection in mice induced a mild, but significant, state of peripheral thrombocytopenia in addition to pulmonary platelet accumulation. Increased platelet activation was detected in infected mice through increased levels of the platelet-derived mediators, platelet factor-4 and ß-thromboglobulin, in BAL fluid and blood plasma. In mice depleted of circulating platelets, pulmonary neutrophil recruitment was significantly reduced 24 hours after infection, whereas the incidence of systemic dissemination of bacteria was significantly increased compared with non-platelet-depleted control mice. Furthermore, mortality rates were increased in bacterial-infected mice depleted of circulating platelets. This work demonstrates a role for platelets in the host response toward a gram-negative bacterial respiratory infection.


Asunto(s)
Plaquetas/inmunología , Enfermedades Pulmonares/sangre , Infiltración Neutrófila/inmunología , Activación Plaquetaria/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Trombocitopenia/sangre , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/microbiología , Ratones , Neutrófilos/inmunología , Recuento de Plaquetas , Factor Plaquetario 4/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Trombocitopenia/inmunología , Trombocitopenia/patología , beta-Tromboglobulina/metabolismo
12.
Platelets ; 29(8): 766-770, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30411649

RESUMEN

Gustav Born achieved scientific fame for his application of light transmission aggregometry to the study of platelet function, but also led interdisciplinary research teams in pioneering quantitative in vivo imaging studies of platelet aggregation and leukocyte adhesion, and in conducting the first research into the biomechanical factors underlying atherosclerotic plaque rupture. Gus Born also communicated both current research findings and an integrated understanding of cardiovascular biology to a wide audience through acting as scientific advisor on several television productions. Using footage from two of these films, we discuss Gustav Born's scientific achievements and legacy.


Asunto(s)
Plaquetas , Leucocitos , Placa Aterosclerótica/historia , Agregación Plaquetaria , Adhesión Celular , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Pruebas de Función Plaquetaria/historia
13.
Blood ; 125(7): 1146-58, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25538043

RESUMEN

The small GTPase Rac is required for neutrophil recruitment during inflammation, but its guanine-nucleotide exchange factor (GEF) activators seem dispensable for this process, which led us to investigate the possibility of cooperation between Rac-GEF families. Thioglycollate-induced neutrophil recruitment into the peritoneum was more severely impaired in P-Rex1(-/-) Vav1(-/-) (P1V1) or P-Rex1(-/-) Vav3(-/-) (P1V3) mice than in P-Rex null or Vav null mice, suggesting cooperation between P-Rex and Vav Rac-GEFs in this process. Neutrophil transmigration and airway infiltration were all but lost in P1V1 and P1V3 mice during lipopolysaccharide (LPS)-induced pulmonary inflammation, with altered intercellular adhesion molecule 1-dependent slow neutrophil rolling and strongly reduced L- and E-selectin-dependent adhesion in airway postcapillary venules. Analysis of adhesion molecule expression, neutrophil adhesion, spreading, and migration suggested that these defects were only partially neutrophil-intrinsic and were not obviously involving vascular endothelial cells. Instead, P1V1 and P1V3 platelets recapitulated the impairment of LPS-induced intravascular neutrophil adhesion and recruitment, showing P-Rex and Vav expression in platelets to be crucial. Similarly, during ovalbumin-induced allergic inflammation, pulmonary recruitment of P1V1 and P1V3 eosinophils, monocytes, and lymphocytes was compromised in a platelet-dependent manner, and airway inflammation was essentially abolished, resulting in improved airway responsiveness. Therefore, platelet P-Rex and Vav family Rac-GEFs play important proinflammatory roles in leukocyte recruitment.


Asunto(s)
Plaquetas/metabolismo , Quimiotaxis de Leucocito/genética , Factores de Intercambio de Guanina Nucleótido/genética , Inflamación/genética , Inflamación/inmunología , Proteínas Proto-Oncogénicas c-vav/genética , Enfermedad Aguda , Animales , Adhesión Celular/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lipopolisacáridos , Ratones , Ratones Noqueados , Infiltración Neutrófila/genética , Neumonía/genética , Neumonía/inmunología , Proteínas Proto-Oncogénicas c-vav/metabolismo
14.
Res Sq ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38077002

RESUMEN

The bone marrow is the main site of blood cell production in adults, however, rare pools of hematopoietic stem and progenitor cells with self-renewal and differentiation potential have been found in extramedullary organs. The lung is primarily known for its role in gas exchange but has recently been described as a site of blood production in mice. Here, we show that functional hematopoietic precursors reside in the extravascular spaces of the human lung, at a frequency similar to the bone marrow, and are capable of proliferation and engraftment. The organ-specific gene signature of pulmonary and medullary CD34+ hematopoietic progenitors indicates greater baseline activation of immune, megakaryocyte/platelet and erythroid-related pathways in lung progenitors. Spatial transcriptomics mapped blood progenitors in the lung to a vascular-rich alveolar interstitium niche. These results identify the lung as a pool for uniquely programmed blood stem and progenitor cells with the potential to support hematopoiesis in humans.

15.
ACS Infect Dis ; 10(6): 2108-2117, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38819300

RESUMEN

Understanding how the host immune system engages complex pathogens is essential to developing therapeutic strategies to overcome their virulence. While granzymes are well understood to trigger apoptosis in infected host cells or bacteria, less is known about how the immune system mobilizes individual granzyme species in vivo to combat diverse pathogens. Toward the goal of studying individual granzyme function directly in vivo, we previously developed a new class of radiopharmaceuticals termed "restricted interaction peptides (RIPs)" that detect biochemically active endoproteases using positron emission tomography (PET). In this study, we showed that secreted granzyme B proteolysis in response to diverse viral and bacterial pathogens could be imaged with [64Cu]Cu-GRIP B, a RIP that specifically targets granzyme B. Wild-type or germline granzyme B knockout mice were instilled intranasally with the A/PR/8/34 H1N1 influenza A strain to generate pneumonia, and granzyme B production within the lungs was measured using [64Cu]Cu-GRIP B PET/CT. Murine myositis models of acute bacterial (E. coli, P. aeruginosa, K. pneumoniae, and L. monocytogenes) infection were also developed and imaged using [64Cu]Cu-GRIP B. In all cases, the mice were studied in vivo using mPET/CT and ex vivo via tissue-harvesting, gamma counting, and immunohistochemistry. [64Cu]Cu-GRIP B uptake was significantly higher in the lungs of wild-type mice that received A/PR/8/34 H1N1 influenza A strain compared to mice that received sham or granzyme B knockout mice that received either treatment. In wild-type mice, [64Cu]Cu-GRIP B uptake was significantly higher in the infected triceps muscle versus normal muscle and the contralateral triceps inoculated with heat killed bacteria. In granzyme B knockout mice, [64Cu]Cu-GRIP B uptake above the background was not observed in the infected triceps muscle. Interestingly, live L. monocytogenes did not induce detectable granzyme B on PET, despite prior in vitro data, suggesting a role for granzyme B in suppressing their pathogenicity. In summary, these data show that the granzyme response elicited by diverse human pathogens can be imaged using PET. These results and data generated via additional RIPs specific for other granzyme proteases will allow for a deeper mechanistic study analysis of their complex in vivo biology.


Asunto(s)
Granzimas , Ratones Noqueados , Animales , Granzimas/metabolismo , Ratones , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos de Cobre , Femenino , Ratones Endogámicos C57BL , Infecciones Bacterianas/diagnóstico por imagen , Infecciones Bacterianas/inmunología , Modelos Animales de Enfermedad , Pulmón/diagnóstico por imagen , Pulmón/microbiología , Pulmón/inmunología , Radiofármacos , Infecciones por Orthomyxoviridae/inmunología
16.
J Clin Invest ; 134(11)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530369

RESUMEN

Antibodies can initiate lung injury in a variety of disease states such as autoimmunity, in reactions to transfusions, or after organ transplantation, but the key factors determining in vivo pathogenicity of injury-inducing antibodies are unclear. Harmful antibodies often activate the complement cascade. A model for how IgG antibodies trigger complement activation involves interactions between IgG Fc domains driving the assembly of IgG hexamer structures that activate C1 complexes. The importance of IgG hexamers in initiating injury responses was not clear, so we tested their relevance in a mouse model of alloantibody- and complement-mediated acute lung injury. We used 3 approaches to block alloantibody hexamerization (antibody carbamylation, the K439E Fc mutation, or treatment with domain B from staphylococcal protein A), all of which reduced acute lung injury. Conversely, Fc mutations promoting spontaneous hexamerization made a harmful alloantibody into a more potent inducer of acute lung injury and rendered an innocuous alloantibody pathogenic. Treatment with a recombinant Fc hexamer "decoy" therapeutic protected mice from lung injury, including in a model with transgenic human FCGR2A expression that exacerbated pathology. These results indicate an in vivo role of IgG hexamerization in initiating acute lung injury and the potential for therapeutics that inhibit or mimic hexamerization to treat antibody-mediated diseases.


Asunto(s)
Lesión Pulmonar Aguda , Inmunoglobulina G , Receptores de IgG , Animales , Ratones , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Inmunoglobulina G/inmunología , Humanos , Receptores de IgG/inmunología , Receptores de IgG/genética , Receptores de IgG/metabolismo , Activación de Complemento/inmunología , Ratones Transgénicos , Isoanticuerpos/inmunología , Mutación Missense , Modelos Animales de Enfermedad , Sustitución de Aminoácidos , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo
17.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328049

RESUMEN

Antibodies can initiate lung injury in a variety of disease states such as autoimmunity, transfusion reactions, or after organ transplantation, but the key factors determining in vivo pathogenicity of injury-inducing antibodies are unclear. A previously overlooked step in complement activation by IgG antibodies has been elucidated involving interactions between IgG Fc domains that enable assembly of IgG hexamers, which can optimally activate the complement cascade. Here, we tested the in vivo relevance of IgG hexamers in a complement-dependent alloantibody model of acute lung injury. We used three approaches to block alloantibody hexamerization (antibody carbamylation, the K439E Fc mutation, or treatment with domain B from Staphylococcal protein A), all of which reduced acute lung injury. Conversely, Fc mutations promoting spontaneous hexamerization made a harmful alloantibody into a more potent inducer of acute lung injury and rendered an innocuous alloantibody pathogenic. Treatment with a recombinant Fc hexamer 'decoy' therapeutic protected mice from lung injury, including in a model with transgenic human FCGR2A expression that exacerbated pathology. These results indicate a direct in vivo role of IgG hexamerization in initiating acute lung injury and the potential for therapeutics that inhibit or mimic hexamerization to treat antibody-mediated diseases.

18.
Int J Biochem Cell Biol ; 157: 106373, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36716816

RESUMEN

Blood platelets are best known for their roles in hemostasis and thrombosis, but platelets also make important contributions to inflammation, immunity, and inflammatory resolution. Experiments involving depletion, genetic modification, and live imaging of platelets in animal models have increased our mechanistic understanding of platelet contributions to inflammation. In this minireview, we provide a critical overview of experimental techniques for manipulating and imaging platelets in inflammation models. We then highlight studies using innovative approaches to elucidate molecular mechanisms through which platelet subsets, platelet Fc gamma receptors, and pro-resolution platelet functions influence inflammatory responses. We also propose future technologies and research directions which might move us closer to harnessing of platelet functions for improved therapeutic modulation of inflammatory diseases.


Asunto(s)
Plaquetas , Trombosis , Animales , Hemostasis , Inflamación
19.
bioRxiv ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-36778478

RESUMEN

Microbes, toxins, therapeutics and cells are often instilled into lungs of mice to model diseases and test experimental interventions. Consistent pulmonary delivery is critical for experimental power and reproducibility, but we observed variation in outcomes between handlers using different anesthetic approaches for intranasal dosing into mice. We therefore used a radiotracer to quantify lung delivery after intranasal dosing under inhalational (isoflurane) versus injectable (ketamine/xylazine) anesthesia in C57BL/6 mice. We found that ketamine/xylazine anesthesia resulted in delivery of a greater proportion (52±9%) of an intranasal dose to lungs relative to isoflurane anesthesia (30±15%). This difference in pulmonary dose delivery altered key outcomes in models of viral and bacterial pneumonia, with mice anesthetized with ketamine/xylazine for intranasal infection with influenza A virus or Pseudomonas aeruginosa developing more robust lung inflammation responses relative to control animals randomized to isoflurane anesthesia. Pulmonary dosing efficiency through oropharyngeal aspiration was not affected by anesthetic method and resulted in delivery of 63±8% of dose to lungs, and a non-surgical intratracheal dosing approach further increased lung delivery to 92±6% of dose. Use of either of these more precise dosing methods yielded greater experimental power in the bacterial pneumonia model relative to intranasal infection. Both anesthetic approach and dosing route can impact pulmonary dosing efficiency. These factors affect experimental power and so should be considered when planning and reporting studies involving delivery of fluids to lungs of mice.

20.
JCI Insight ; 8(21)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37788115

RESUMEN

Primary graft dysfunction (PGD) limits clinical benefit after lung transplantation, a life-prolonging therapy for patients with end-stage disease. PGD is the clinical syndrome resulting from pulmonary ischemia-reperfusion injury (IRI), driven by innate immune inflammation. We recently demonstrated a key role for NK cells in the airways of mouse models and human tissue samples of IRI. Here, we used 2 mouse models paired with human lung transplant samples to investigate the mechanisms whereby NK cells migrate to the airways to mediate lung injury. We demonstrate that chemokine receptor ligand transcripts and proteins are increased in mouse and human disease. CCR5 ligand transcripts were correlated with NK cell gene signatures independently of NK cell CCR5 ligand secretion. NK cells expressing CCR5 were increased in the lung and airways during IRI and had increased markers of tissue residency and maturation. Allosteric CCR5 drug blockade reduced the migration of NK cells to the site of injury. CCR5 blockade also blunted quantitative measures of experimental IRI. Additionally, in human lung transplant bronchoalveolar lavage samples, we found that CCR5 ligand was associated with increased patient morbidity and that the CCR5 receptor was increased in expression on human NK cells following PGD. These data support a potential mechanism for NK cell migration during lung injury and identify a plausible preventative treatment for PGD.


Asunto(s)
Lesión Pulmonar , Daño por Reperfusión , Animales , Humanos , Ratones , Células Asesinas Naturales , Ligandos , Pulmón/metabolismo , Lesión Pulmonar/metabolismo , Receptores CCR5/genética , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA