Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 586(7830): 506-507, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33087907
2.
Nat Commun ; 15(1): 1961, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438365

RESUMEN

Three-dimensional models of Earth's seismic structure can be used to identify temperature-dependent phenomena, including mineralogical phase and spin transformations, that are obscured in 1-D spherical averages. Full-waveform tomography maps seismic wave-speeds inside the Earth in three dimensions, at a higher resolution than classical methods. By providing absolute wave speeds (rather than perturbations) and simultaneously constraining bulk and shear wave speeds over the same frequency range, it becomes feasible to distinguish variations in temperature from changes in composition or spin state. We present a quantitative joint interpretation of bulk and shear wave speeds in the lower mantle, using a recently published full-waveform tomography model. At all depths the diversity of wave speeds cannot be explained by an isochemical mantle. Between 1000 and 2500 km depth, hypothetical mantle models containing an electronic spin crossover in ferropericlase provide a significantly better fit to the wave-speed distributions, as well as more realistic temperatures and silica contents, than models without a spin crossover. Below 2500 km, wave speed distributions are explained by an enrichment in silica towards the core-mantle boundary. This silica enrichment may represent the fractionated remains of an ancient basal magma ocean.

3.
Geochem Geophys Geosyst ; 19(10): 3892-3916, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31007624

RESUMEN

In seismic tomography we map the wave speed structure inside the Earth, but we ultimately seek to interpret those images in terms of physical parameters. This is challenging because many parameters can trade-off with each other to produce a given wave speed. The problem is compounded by the convention of mapping seismic structures as perturbations relative to a 1-D reference model, rather than absolute wave speeds. Using a full waveform tomography model of Europe as a case study, we quantify the extent to which thermochemical and dynamic properties can be constrained using only S wave speed, expressed in absolute values. The wave speed distributions of this tomography model are compared with 4 million thermochemical models, whose seismic properties are computed via thermodynamic modeling. These models sample the full range of realistic mantle compositions, including variable water and melt contents, and mineral intrinsic anelasticity is taken into account. Intrinsic anelasticity causes waves to travel more slowly at higher temperatures, leading to seismic attenuation, but the sensitivity of the wave speed reduction to temperature is, in turn, controlled by the wave frequency. Global studies of surface waves indicate an anticorrelation between S wave speed and attenuation. We therefore only retain thermochemical models satisfying this anticorrelation. Our study indicates that the frequency dependence of anelasticity, α, depends on temperature or rheology, with α ≈ 0.1 being most appropriate in cold or lithospheric mantle and α ≈ 0.3 in warmer regions (i.e., the asthenosphere). Additionally, the slowest regions require specific compositions and/or a velocity-weakening mechanism, such as partial melting, elastically accommodated grain boundary sliding, or water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA